DRAFT REPORT
 Residential Impact Fee Nexus Study

November 2015
prepared for:
City of Belmont

VWA
Vernazza Wolfe Associates, Inc.

Table of Contents

I. EXECUTIVE SUMMARY .. 5

Introduction .. 5
Background .. 5
Report Organization... 5
Nexus Analysis Results.. 6
Policy Considerations.. 12
II. INTRODUCTION AND METHODOLOGY ... 13

Background .. 13
The Nexus Concept ... 14
Methodology... 14
III. RESIDENTIAL PROTOTYPES.. 16

Recent Housing Development Trends ... 16
Belmont Residential Prototypes .. 16
Household Incomes of Buyers and Renters .. 22
IV. ECONOMIC IMPACT ANALYSIS (IMPLAN3) .. 26

The IMPLAN3 Model... 26
Household Income Impacts ... 27
Employment and Wage Impacts ... 27
Estimating Worker-Households ... 28
Estimating Demand for Affordable Housing... 28
V. AFFORDABILITY GAP ANALYSIS ... 34

Methodology.. 34
Estimating Affordable Rents and Sales Prices .. 35
Estimating Housing Development Costs.. 42
Calculating the Housing Affordability Gap ... 47
VI. NEXUS FEES AND REQUIREMENTS... 50

Maximum Fee Calculation .. 50
Inclusionary Housing Requirements .. 54
Summary of Assumptions ... 54
VII. POLICY CONSIDERATIONS .. 56
VIII. GLOSSARY OF TERMS AND ACRONYMS.. 60

Glossary of terms .. 60
Definition of Acronyms ... 63

List of Figures

Figure I-1. Sales Prices and Rental Rates of Residential Prototypes ... 7
Figure I-2. Estimated Annual Household Incomes of Buyers of Single-Family Detached Units................. 8
Figure I-3. Estimated Annual Household Incomes of Buyers of Single-Family Attached Units 8
Figure I-4. Estimated Annual Household Incomes of Buyers of Condominium Units 8
Figure I-5. Estimated Annual Household Incomes of Renters of Apartment Units 8
Figure I-6. New Worker Households by Income Group for Single-Family Detached, Single-Family Attached, Condominium and Apartment Prototypes9
Figure I-7. Number of Worker Households Associated with 100-Unit Prototypes, by Income Level 10
Figure I-8. Total Affordability Gap for Single-Family Detached. 10
Figure I-9. Total Affordability Gap for Single-Family Detached. 10
Figure I-10. Total Affordability Gap for Condominiums 11
Figure I-11.Total Affordability Gap for Apartments 11
Figure I-12. Maximum Housing Impact Fee by Prototype 11
Figure III-1. Sales of Recently Built Single-Family Detached Units in Belmont* 18
Figure III-2. Sales of Recently Built Single-Family Attached Units in Redwood City* 18
Figure III-3. Sales of Recently Built Condominium Units in San Carlos* 19
Figure III-4. Asking Rents of Recently Built Apartment Units in Redwood City 21
Figure III-5. Belmont Prototypes 22
Figure III-6. Estimated Annual Household Incomes of Buyers of Single-Family Detached Units 24
Figure III-7. Estimated Annual Household Incomes of Buyers of Single-Family Attached Units 24
Figure III-8. Estimated Annual Household Incomes of Buyers of Condominium Units 25
Figure III-9. Estimated Annual Household Incomes of Renters of Apartment Units 25
Figure IV-1. Estimated Incomes by Income Categories for Buyers of Single-Family Detached and Single- Family Attached Units 29
Figure IV-2. Estimated Incomes by Income Categories for Buyers of Condominium Units, and forRenters of Apartment Units30
Figure IV-3. Estimated Job and Wage Impacts of Prototypes by Industry 31
Figure IV-4. Estimated Job and Wage Impacts of Prototypes by Occupation 32
Figure IV-5. Induced Employment Impacts, Belmont 33
Figure IV-6. New Worker Households by Income Group for Single-Family Detached, Single-Family Attached, Condominium and Apartment Prototypes 33
Figure V-1. Calculation of Affordable Rents in San Mateo County by Household Size, 2014. 38
Figure V-2. Calculation of Affordable Rents in San Mateo County by Unit Type, 2014 39
Figure V-3. Calculation of Affordable Sales Prices in San Mateo County by Household Size, 2014 40
Figure V-4. Calculation of Affordable Sales Prices in San Mateo County by Unit Type, 2014 41
Figure V-5. Affordable Housing Project Pro Forma Data 43
Figure V-6. Sales of Vacant Lands in San Mateo County, 2014 44
Figure V-7. Condominium Sales: Average Unit Characteristics and Prices for Selected Cities in San 45Mateo County (2008-2012)
Figure V-8. Estimate of Development Costs of Hypothetical Condominium Project 45
Figure V-9. Rental Housing Unit Sizes and Development Costs 46
Figure V-10. For-Sale Housing Unit Sizes and Development Costs 46
Figure V-11. Housing Affordability Gap Calculation for Rental Housing 48
Figure V-12. Housing Affordability Gap Calculation for For-Sale Condominium Housing 49
Figure V-13. Average Housing Affordability Gap by Income Group 49
Figure VI-1. Maximum Per-Unit Fee for Single-Family Detached Prototype 51
Figure VI-2. Maximum Per-Unit Fee for Single-Family Attached Prototype 51
Figure VI-3. Maximum Per-Unit Fee for Condominium Prototype 51
Figure VI-4. Maximum Per-Unit Fee for Apartment Prototype 52

Figure VI-5. Maximum Fee per SF for Single-Family Detached Prototype... 52
Figure VI-6. Maximum Fee per SF for Single-Family Attached Prototype ... 52
Figure VI-7. Maximum Fee per SF for Condominium Prototype ... 53
Figure VI-8. Maximum Fee per SF for Apartment Prototype ... 53
Figure VI-9. Calculated Inclusionary Rates Based on Potential Housing Impact Fees 54
Figure VII-1. Belmont Total Residential Fees .. 57

I. EXECUTIVE SUMMARY

INTRODUCTION

This report is part of the 21 Elements multi-city nexus study, a collaborative effort to mitigate the impacts of new development on the demand for affordable housing in San Mateo County. In February 2014, the local jurisdictions in San Mateo County partnered to hire Strategic Economics and Vernazza Wolfe Associates, Inc. to develop nexus studies for commercial linkage fees and residential impact fees. ${ }^{1}$ The project was initiated by 21 Elements, a countywide collaboration among all the cities in San Mateo County on housing issues. The preparation of these fee studies may result in the adoption of new impact fees on either residential, commercial or both types of developments. This draft report describes the methodology, data sources, and analytical steps required for the nexus analysis.

BACKGROUND

Belmont is potentially interested in adopting an affordable housing impact fee on new residential development. The purpose of this fee would be to mitigate the impact of an increase in affordable housing demand from new worker households associated with new market-rate residential units. When a city or county adopts a development impact fee, it must establish a reasonable relationship or connection between the development project and the fee that is charged. Studies undertaken to demonstrate this connection are called nexus studies. This nexus study quantifies the connection between the development of market rate housing and the demand for affordable housing units.

This residential nexus study measures the income and spending generated by the new market rate households renting or buying new units in Belmont. This new consumption is then translated into new induced job growth. These induced jobs will be at various wage rates; many will be at lower wages, for example in the retail and personal services sectors. Since low-wage households cannot reasonably afford to pay for market rate rental and for-sale housing in Belmont, a housing impact fee can be justified to bridge the difference between what these new households can afford to pay and the cost of developing modest housing units to accommodate them.

REPORT ORGANIZATION

This executive summary provides an overview of the housing nexus analysis methodology and results. The subsequent chapters of the report contain more detailed information regarding the methodology, data sources, and the steps of the analysis. The report is organized into seven sections and a glossary of terms. Following this executive summary, Section II provides an introduction to the purpose of the study, and an overview of the methodology. Section III presents the residential prototypes used in the analysis. Section IV describes the methodology and results of the IMPLAN economic impact analysis. Section V covers the housing affordability gap analysis. Section VI presents the maximum fee calculation based on the nexus analysis and affordability gap results. The final section, Section VII, discusses some of the policy considerations that jurisdictions weigh before implementing a nexus fee.

[^0]
NEXUS ANALYSIS RESULTS

This section describes the steps taken to calculate the nexus-based fee amount per housing unit. More detail on each step can be found in other sections of this report.

Prototypes

The first step in the nexus analysis is developing residential housing prototypes. The prototypes establish the types of market rate housing development that are occurring or are expected to occur in the city that could potentially be subject to the affordable housing impact fee. The fees calculated in this nexus study are only applicable to the housing prototypes defined in this analysis.

Based on historical development trends, market data, broker interviews, and input from city staff, the Consultant Team constructed four housing prototypes that represent the type of development that is likely to occur in Belmont: for-sale single-family detached homes, single-family attached homes, forsale condominiums, and rental apartments. These development prototypes are not intended to represent specific development projects; rather, they are designed to illustrate the type of projects that are likely to be built in Belmont in the near future. Figure I-1 provides information on the unit type and size, as well as estimated sales prices and average monthly rents for each prototype.

Figure I-1. Sales Prices and Rental Rates of Residential Prototypes

Prototype	Unit Type	Number of Units	Net Area (SF)	Unit Sales Pricel Monthly Rent	Price or Rent per SF
Single-Family Detached (For-Sale)					
Wood siding wood frame	4 BD/3 BA	10	2,400	\$1,306,000	\$544
8 units per acre					
Attached garage					
Net Residential Area			24,000		
Single-Family Attached (For-Sale)					
Type V wood frame	$3 \mathrm{BD} / 3 \mathrm{BA}$	50	1,900	\$776,000	\$408
12 units per acre					
Tuck-under podium parking					
Net Residential Area			95,000		
Condominiums (For-Sale)					
Type V wood frame	$1 \mathrm{BD} / 1 \mathrm{BA}$	2	900	\$485,000	\$539
57 units per acre	$2 \mathrm{BD} / 2 \mathrm{BA}$	45	1,100	\$598,000	\$544
Subterranean parking	$3 \mathrm{BD} / 2 \mathrm{BA}$	2	1,300	\$768,000	\$591
Net Residential Area (Net SF)			53,900		
Average Net SF per Unit			1,100		
Apartments (Rental)					
Type V wood frame	Studio	2	600	\$2,500	\$4.17
40 units per acre	$1 \mathrm{BD} / 1$ to 2 BA	49	900	\$3,200	\$3.56
Podium parking	$2 \mathrm{BD} / 1$ to 2 BA	46	1,100	\$3,900	\$3.55
	$3 \mathrm{BD} / 2 \mathrm{BA}$	3	1,300	\$4,000	\$3.08
Net Residential Area (Net SF)			99,800		
Average Net SF per Unit			998		

Sources: Strategic Economics \& Vernazza Wolfe Associates, Inc., 2014.

Household Income

The next step is to calculate the annual household incomes of the buyers and the renters occupying new units by using the sales prices and rents shown in Figure I-1. Threshold incomes needed to purchase or rent units are based on standards used in the housing industry. ${ }^{2}$ Figures I-2, I-3, I-4 and I5 show the estimated household income of single-family detached homebuyers, single-family

[^1]attached homebuyers, condominium buyers, and renters of apartment units, respectively. Household incomes are a key input to the IMPLAN3 economic impact analysis described in Section IV of this report.

Figure I-2. Estimated Annual Household Incomes of Buyers of Single-Family Detached Units

	Single-Family Detached Unit Type
4 BR/3 BA	
Number of Households	10
Sales Price	$\$ 1,306,000$
Household Income	$\$ 231,486$
Source: Applied Development Economics, Inc., 2015; Strategic Economics \& Vernazza Wolfe Associates, Inc. 2015.	

Figure I-3. Estimated Annual Household Incomes of Buyers of Single-Family Attached Units

	Single-Family Attached Unit Type
	3 BR/3 BA
Number of Households	50
Sales Price	$\$ 776,000$
Household Income	$\$ 146,116$
Source: Applied Development Economics, Inc., 2015; Strategic Economics \& Vernazza Wolfe Associates, Inc. 2015.	

Figure I-4. Estimated Annual Household Incomes of Buyers of Condominium Units

	Condominium Unit Type		
	$\mathbf{1}$ BD/1 BA	$\mathbf{2 ~ B D / 2 ~ B A ~}$	3 BD/2 BA
Number of Households	2	45	2
Sales Price	$\$ 485,000$	$\$ 598,000$	$\$ 768,000$
Household Income	$\$ 101,394$	$\$ 121,423$	$\$ 151,555$
Source: Applied Development Economics, Inc., 2015; Strategic Economics \& Vernazza Wolfe Associates, Inc. 2015.			

Figure I-5. Estimated Annual Household Incomes of Renters of Apartment Units

	Apartment Unit Type			
	Studio	1 BD/1 to 2 BA	2 BD/1 to 2 BA	3 BD/2 BA
Number of Households	2	49	46	3
Monthly Rent	$\$ 2,500$	$\$ 3,200$	$\$ 3,900$	$\$ 4,000$
Household Income	$\$ 100,000$	$\$ 128,000$	$\$ 156,000$	$\$ 160,000$
Source: Applied Development Economics, Inc., 2015; Strategic Economics \& Vernazza Wolfe Associates, Inc. 2015.				

Economic Impact Analysis (IMPLAN)

The next step is to determine employment and wage impacts of each prototype based on the incomes of the occupants of new housing units. The buyers and renters of the new market-rate single-family detached units, single-family attached, condominiums, and apartments create new spending in the local economy. These new expenditures can be linked to new jobs, many of which pay low wages. The job and wage impacts related to new market-rate housing units are measured using IMPLAN3, an
economic impact analysis tool. An economics consulting firm, Applied Development Economics (ADE) undertook the IMPLAN3 analysis.

The results of the IMPLAN analysis indicate that many of the induced jobs generated within San Mateo County are in low-wage sectors like retail and food services (restaurants). However, a significant proportion of induced jobs are also in higher-paying resident-serving categories such as health care and government.

Demand for Affordable Housing

Recognizing that many households have more than one wage-earner, the next step is to calculate the number of worker households by dividing the total number of new workers by the average number of wage-earners per household in Belmont. However, not all of the worker households require affordable housing. To estimate the affordable housing demand, the average annual household income of worker households is sorted into income categories that are consistent with area median income (AMI) levels defined for San Mateo County and is specific to the average household size in the jurisdiction. Figure I-6 indicates that of the 5.25 new worker households associated with a singlefamily detached development, there are 4.2 households that need affordable housing. The comparable figures for single-family attached, condominium and apartment developments are, respectively, 18, 14.5 and 29.9 households. In order to directly compare the impact of market rate residential development by prototype, Figure I-7 displays the number of worker households, at the income levels, associated with a 100-unit development project. As shown, a 100 -unit single-family detached subdivision, which has the highest sales values of all the prototypes, is linked to 52.5 worker households. Townhouse, condominium, and apartment developments of the same size are linked to 44.9 worker households, 36.9 worker households, and 37.2 worker households, respectively.

Figure I-6. New Worker Households by Income Group for Single-Family Detached, Single-Family Attached, Condominium and Apartment Prototypes

	Single- Family Detached	Single- Family Attached	Condominium	Apartment
Worker Households by Income Category				
Households Requiring Affordable Housing	1.33	6.01	4.84	9.74
Very Low Income (<=50\% AMI)	1.35	5.75	4.63	9.54
Low Income (51-80\% AMI)	1.52	6.26	5.06	10.57
Moderate Income (81-120\% AMI)	4.20	18.02	14.53	29.85
Subtotal Very Low, Low, Moderate Income	1.05	4.43	3.57	7.38
Above Moderate Income Households	5.25	22.45	18.10	37.23
Total All Worker Households				

Source: Applied Development Economics, Inc., 2015; Strategic Economics \& Vernazza Wolfe Associates, Inc. 2015.

Figure I-7. Number of Worker Households Associated with 100-Unit Prototypes, by Income Level

	Single- Family Detached	Townhouse	Condominium	Apartment
Worker Households by Income Category				
Households Requiring Affordable Housing	13.34	12.02	9.87	9.74
Very Low Income (<=50\% AMI)	13.45	11.50	9.46	9.54
Low Income (51-80\% AMI)	15.20	12.52	10.32	10.57
Moderate Income (81-120\% AMI)	41.99	36.04	29.65	29.85
Subtotal Very Low, Low, Moderate Income	10.47	8.85	7.29	7.38
Above Moderate Income Households	52.46	44.89	36.93	37.23
Total All Worker Households				

Source: Applied Development Economics, Inc., 2015; Strategic Economics \& Vernazza Wolfe Associates, Inc. 2015.

Affordability Gap

The next step is to quantify the total gap between what very low, low, and moderate-income households can afford to pay and the cost of building new, modest rental and for-sale housing units. This housing "affordability gap" number is then multiplied by the number of income-qualified households in each income category for single-family detached, single-family attached, condominium and apartment developments separately in order to estimate the total housing affordability gap for each prototype. Figures I-8 through I-11 present these totals for single-family detached, single-family attached, condominiums and apartments.

Figure I-8. Total Affordability Gap for Single-Family Detached

	Households Requiring Affordable Housing	Average Affordability Gap per Household	Affordability Gap for All Households
Income Level	1.3	$\$ 280,783$	$\$ 374,496$
Very Low-Income (<50\% AMI)	1.3	$\$ 240,477$	$\$ 323,463$
Low-Income (50-80\% AMI)	1.5	$\$ 175,558$	$\$ 266,895$
Moderate-Income (80-120\% AMI)	4.2		$\$ 964,855$
\quad Total			

Sources: Vernazza Wolfe Associates, Inc.; Strategic Economics, 2014.

Figure I-9. Total Affordability Gap for Single-Family Detached

Income Level	Households Requiring Affordable Housing	Average Affordability Gap per Household	Affordability Gap for All Households
Very Low-Income (<50\% AMI)	6.0	$\$ 280,783$	$\$ 1,687,711$
Low-Income (50-80\% AMI)	5.7	$\$ 240,477$	$\$ 1,382,195$
Moderate-Income (80-120\% AMI)	6.3	$\$ 175,558$	$\$ 1,099,152$
\quad Total	18.0		$\$ 4,169,058$

Sources: Vernazza Wolfe Associates, Inc.; Strategic Economics, 2014.

Figure I-10. Total Affordability Gap for Condominiums

	Households Requiring Affordable Housing	Average Affordability Gap per Household	Affordability Gap for All Households
Very Low-Income (<50\% AMI)	4.8	$\$ 280,783$	$\$ 1,358,128$
Low-Income (50-80\% AMI)	4.6	$\$ 240,477$	$\$ 1,114,469$
Moderate-Income (80-120\% AMI)	5.1	$\$ 175,558$	$\$ 887,516$
\quad Total	14.5		$\$ 3,360,113$

Sources: Vernazza Wolfe Associates, Inc.; Strategic Economics, 2014.

Figure I-11.Total Affordability Gap for Apartments

	Households Requiring Affordable Housing	Average Affordability Gap per Household	Affordability Gap for All Households
Income Level	9.74	$\$ 280,783$	$\$ 2,733,674$
Very Low-Income (<50\% AMI)	9.54	$\$ 240,477$	$\$ 2,294,242$
Low-Income (50-80\% AMI)	10.57	$\$ 175,558$	$\$ 1,856,415$
Moderate-Income (80-120\% AMI)	29.85		$\$ 6,884,331$
\quad Total			

Sources: Vernazza Wolfe Associates, Inc.; Strategic Economics, 2014.

Maximum Nexus-Based Fee

The final step in calculating the maximum housing impact fee by prototype is to divide the total gap at each income level by the number of units in each prototype. This maximum fee amount represents the ceiling on the fee that could be charged to mitigate affordable housing impacts from new residential development.

The maximum single-family detached impact fee per unit is $\$ 96,485$, the maximum singlefamily attached fee per unit is $\$ 83,381$, the maximum condominium impact fee per unit is $\$ 68,574$, and the maximum apartment fee per unit is $\$ 68,843$. The fees are also calculated on a per-square-foot basis by dividing the unit fee by the average size of the unit. On a per-square-foot basis, the maximum impact fee is $\mathbf{\$ 4 0}$ for single-family detached, $\$ 44$ for single-family attached, $\mathbf{\$ 6 2}$ for condominiums and $\$ 69$ for apartments. Figure I-12 presents the results of this final step.

Figure I-12. Maximum Housing Impact Fee by Prototype

Prototype	Single-Family Detached	Single-Family Attached	Condominiums	Apartments
Total Number of Units	10	50	49	100
Average Unit Size	2,400	1,900	1,100	998
Total Affordability Gap	$\$ 964,855$	$\$ 4,169,058$	$\$ 3,360,113$	$\$ 6,884,331$
Maximum Fee per Unit	$\$ 96,485$	$\$ 83,381$	$\$ 68,574$	$\$ 68,843$
Maximum Fee per SF	$\$ 40$	$\$ 44$	$\$ 62$	$\$ 69$

Sources: Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2015.

POLICY CONSIDERATIONS

There are a number of policy considerations that are typically taken into account when a jurisdiction considers whether to adopt an affordable housing impact fee on new market-rate development. This report summarizes the effect of the maximum fees on the City's existing fee structure, and its role in Belmont's overall affordable housing strategy.

Comparison to Existing City Fees - Based on the current schedule of fees, the total city fees for the residential prototypes are estimated to range from approximately $\$ 25,000$ for an apartment unit to $\$ 54,000$ for a single family attached or condominium unit. ${ }^{3}$

Role of Fee in Belmont's Overall Housing Strategy - Belmont does not currently have residential impact fee or commercial linkage fees. The City has not enacted an inclusionary zoning ordinance for residential projects, but may adopt one pending the results of this nexus study. If Belmont adopts a new residential impact fee, the revenues could be used either to create a new citywide fund or could be contributed to a countywide fund, such as HEART. The existence of additional local revenue sources such as the residential impact fees can help make certain projects more competitive for outside funding. Revenues generated from a residential impact fee must be spent on housing that benefits the workforce, since the funds stem from affordable housing impacts related to new employment. Furthermore, the funds must target very low, low, and moderate income households, the income groups that are included in this nexus study. The revenues to be collected from a residential impact fee provide an important source of local funding; however, fee revenues do not generally cover the entire funding gap encountered by sponsors of new affordable housing. Additional funding from a variety of sources will remain critical.

[^2]
II. INTRODUCTION AND METHODOLOGY

Belmont is considering a housing impact fee on new residential development. The purpose of this fee would be to mitigate the impact of an increase in demand for affordable housing due to employment growth associated with potential new residential development. When a city or county adopts a development impact fee, it must establish a reasonable relationship or connection between the development project and the impacts for which the fee is charged. Studies undertaken to demonstrate this connection are called nexus studies. Nexus studies for school impact fees, traffic mitigation fees, and park fees are common. For housing impact fees, a methodology exists that establishes a connection between the development of market rate housing and the need to expand the supply of affordable housing. This study is based on this methodology.

The approach for this nexus study is to estimate the number of new workers that will be required to provide goods and services to the market rate households that are occupying new units in Belmont. Although growth in employment will provide jobs at various wage rates, many of the new jobs will be at low-wage rates in retail trade and services, consistent with job patterns in the County. Since low-wage households cannot reasonably afford to pay for market rate rental and for-sale housing in Belmont, a housing impact fee can bridge the difference between what these new households can afford to pay and the costs of developing new housing units for them.

New market rate housing units in Belmont create a need for low-wage employees to provide goods and services to residents of the new units. If new market rate housing were not built, there would not be an increase in employment nor the accompanying demand for affordable housing from these new workers. Because housing impact fees are directed related to employment growth, the revenues collected from these fees needs to be spent on workforce housing and not on housing for households that do not participate in the labor force, such as retired seniors, unemployed homeless, and full-time student populations.

BACKGROUND

Cities and counties in California have operated inclusionary zoning programs to increase the supply of affordable housing since the 1970s. An inclusionary program requires that builders of new residential projects provide a specified percentage of units, either on-site or off-site, at affordable prices. Some programs have also allowed developers the option of paying fees "in lieu" of providing inclusionary units.

Inclusionary zoning policies have usually been established based on the police power of cities and counties to enact legislation benefitting public health, safety, and welfare. In its recent decision on California Building Industry Ass'n v. City of San Jose, the California Supreme Court upheld this power of cities, finding that the objective of increasing affordable housing supply in economically diverse developments was "unquestionably" permitted by the U.S. Constitution.

However, in 2009, in Palmer/Sixth Street Properties, L.P. v. City of Los Angeles, the Court of Appeal held that inclusionary rental requirements violate the Costa Hawkins Rental Housing Act, which allows landlords to determine the rents of all new units. Affordable rental housing may still be required if a developer agrees by contract to do so, in exchange for financial assistance or regulatory incentives. However, in the absence of these incentives, restricted rents cannot be required of a developer. Consequently, communities have completed nexus studies and imposed rental housing impact fees to mitigate the impact of market-rate rental housing on the need for affordable housing. Although a nexus analysis is not required to adopt inclusionary ordinances and in-lieu fees on for-sale housing, conducting a nexus study provides additional support for these requirements.

The nexus analyses presented in this study are designed to define an upper limit for a housing impact fee to be charged on new rental and for-sale housing to mitigate impacts on affordable housing needs. The maximum fee is not necessarily the recommended fee. Subsequent sections of this report address additional policy considerations to consider when adopting housing impact fees.

THE NEXUS CONCEPT

In a balanced housing market, the development of new market rate housing results in population growth. Residents purchasing and renting these new units now spend money in the city. For example, they go out to eat in local restaurants, shop for food and clothing in local stores, and patronize other local businesses, such as hair salons, dry cleaners, and dental offices. This local spending results in the need to hire new workers to respond to the increased demand for goods and services. A nexus study establishes the connection between the households that purchase new housing units (or rent newly constructed rental units) and the number of new workers that will be hired by local businesses to serve the needs of new residents.

Growth in employment will provide jobs at various wage rates. While some jobs will pay salaries that will allow new workers to rent or purchase market rate housing, many new jobs will also be at lower wages. Since low-wage households cannot reasonably afford to pay for market rate rental and for-sale housing in Belmont, a housing impact fee addresses the demand for affordable housing.

METHODOLOGY

The first step of the nexus analysis is to estimate the market prices or rents of new housing units. Based on these prices or rents, gross household incomes of buyers and renters are calculated. The gross household incomes of buyers and renters are then translated into direct economic impacts (new spending on retail goods and personal services), and induced impacts (new jobs and wage income) using the IMPLAN3 model. The IMPLAN3 analysis provides information on likely incomes of new workers. These incomes can then be used to estimate the demand for affordable housing from new worker households, and the costs of providing these affordable units.

Each step of the nexus analysis is described in greater detail below.

Step 1. Define the residential prototypes that represent new market rate housing development.

Based on a review of recent development trends, pipeline projects, and market data for the city and county, the residential prototypes are defined. The prototypes represent typical new market-rate development projects likely to occur in the city. The prototype definitions include information on the building characteristics, net residential area, unit mix and sizes, and sales prices or rents.

Step 2. Estimate household income of buyers and renters of new market rate units.

The average gross household income required to purchase or rent new market rate units is estimated based on the market value or rents of new units. For ownership units, the calculation assumes typical mortgage terms and assumes that buyers spend 35 percent of their gross incomes on housing costs. For rental units, is assumed that renter households spend 30 percent of their gross incomes on housing.

Step 3. Estimate economic impacts of new buyers and renters using IMPLAN3.

The IMPLAN3 model uses Bureau of Labor Statistics Consumer Expenditure Survey data to model the spending patterns of different income groups. The model estimates the increase in expenditures from new households, the number of new (induced) workers related to new households, and the occupations and wages of these new workers.

Step 4. Estimate the number of new worker households and annual household incomes.
The number of new induced workers from the IMPLAN3 analysis is divided by the average number of workers per household in the city (defined by the U.S. Census Bureau) to calculate the total number of worker households associated with each housing prototype. The average worker's wage calculated in the IMPLAN3 analysis is multiplied by the number of workers per household in the city to derive gross household income. This step assumes that the all wage-earners in a household have the same income.

Step 5. Estimate the demand for affordable housing from new worker households.

Based on the calculation of new worker household income, the worker households are categorized by target income group (very low income, low income, moderate income, and above moderate income). Worker households with above-moderate incomes are removed from the nexus analysis, because they would not require affordable housing.

Step 6. Estimate the affordability gap of new households requiring affordable housing.
The affordability gap represents the difference between what households can afford to pay for housing and the development cost of a modest housing unit. For very low and low income households, a rental housing gap is used. For moderate income households, the housing affordability gap is calculated separately for renter and owner households, and then the two gaps are combined to derive an average affordability gap for moderate income households.

Step 7. Estimate nexus-based fees for each prototype.

The number of new households requiring affordable housing is multiplied by the average affordability gap per household to estimate the total affordability gap for each prototype. The maximum per-unit and per-square foot fees are then calculated by dividing the aggregate affordability gap by the number of units or net residential area in each prototype.

III. RESIDENTIAL PROTOTYPES

The first step in the nexus analysis is developing residential housing prototypes. The residential prototypes establish the types of residential development that are occurring or are expected to occur in the city and could potentially be subject to the affordable housing impact fee. The housing prototypes are not intended to represent specific development projects; rather, they are designed to illustrate the type of projects that are likely to be built in Belmont in the near future. The fees calculated in this nexus study are only applicable to the housing prototypes defined in this analysis.
Based on estimated sales prices and rents of new market-rate units, the household incomes of buyers and renters of new units are estimated. This section of the report describes the methodology for establishing the prototypes and calculating the household incomes of buyers and renters of new market-rate units in Belmont. The estimated household incomes are then used as inputs to the IMPLAN3 analysis to estimate the employment impacts of the market-rate households, which is described in more detail in Section IV of this report.

RECENT HOUSING DEVELOPMENT TRENDS

In order to ensure that the prototypes accurately reflect current market conditions, the Consultant Team analyzed recently built market rate housing development projects in neighboring cities comparable to Belmont. The City anticipates single-family detached, single-family attached, condominium and apartment development in the future, for which prototypes were constructed.

Figure III-1 summarizes the market data for recently built single-family detached units in Belmont. The table shows that units sold, on average, for approximately $\$ 1.3$ million, and had an average size of approximately 2,400 square feet. Because Belmont had no recent examples of single-family attached, condominium, and apartment development projects, comparable projects in nearby San Carlos and Redwood City were analyzed. As shown in Figure III-2, new single-family attached units had an average sales price of $\$ 776,000$, with an average size of 1,900 square feet. Figure III-3 shows that recently sold condominium units in San Carlos ranged in size from 900 to 1,300 square feet, with sales prices between $\$ 534,000$ and $\$ 586,000$. As shown in Figure III-4, average asking monthly rents for recently built apartment units in Redwood City ranged from $\$ 2,500$ to $\$ 4,000$, depending on unit type.

BELMONT RESIDENTIAL PROTOTYPES

Based on historical development trends, market data, broker interviews, and input from city staff, the Consultant Team constructed four housing prototypes that represent the type of development that is likely to occur in Belmont. These development prototypes are not intended to represent specific development projects; rather, they are designed to illustrate the type of projects that are likely to be built in Belmont in the near future. The prototypes, as shown in Figure III-5, provide information on the building type, number of units, average size by unit type, and average monthly rents or sales prices by unit type.

For-Sale Single-Family Detached Units

The for-sale single-family detached prototype is a wood siding wood-frame building with an attached garage and a net residential area of 24,000 square feet. The estimated density is 8 units per acre. This building type is representative of recently built single-family detached units in Belmont. The singlefamily detached prototype units have four bedrooms of 2,400 square feet and an average sale price of $\$ 1,306,000$, based on the size of recent development in the City.

For-Sale Single-Family Attached Units

The for-sale single-family attached prototype is a Type V wood-frame building with a tuck-under podium parking, a net residential area of 95,000 square feet, and an estimated density of 12 units per acre. This building type is representative of recently built single-family detached units in nearby Redwood City, and of potential development in Belmont. The single-family attached prototype units have three bedrooms of 1,900 square feet, and an average price of $\$ 776,000$.

For-Sale Condominiums

The for-sale condominium prototype is a Type V wood-frame building with an underground parking garage and net residential area of 53,900 square feet. The estimated average density is 57 units per acre. This building type is representative of recently built condominium projects in the neighboring city of San Carlos, and approximate potential future development in Belmont. The condominium mix is composed of mostly two-bedroom units, and a few one- and three-bedroom units. Units range from 900 square feet to 1,300 square feet, with average estimated prices between $\$ 485,000$ and $\$ 768,000$, depending on unit size and number of bedrooms.

Rental Apartments

The rental apartment prototype is a Type V wood-frame building with podium parking and net residential area of 99,800 square feet. The estimated density is 40 units per acre. This prototype is representative of recent market-rate apartment development in Redwood City, and represents potential future development in Belmont. The apartment unit mix consists mostly of one- and twobedroom units, and a few studios and three-bedroom units. Estimated monthly rents range from $\$ 2,900$ to $\$ 4,100$ per unit, depending on unit size and number of bedrooms.

Figure III-1. Sales of Recently Built Single-Family Detached Units in Belmont*

Address	City	Year Built	Square Feet	Bed	Bath	Sale Date	Sale Amount
1149 Villa Ave	Belmont	2011	2,170	3	1	26-Sep-12	\$975,000
2819 San Juan Blvd	Belmont	2011	2,970	4	4.5	7-Nov-11	\$1,252,000
3833 W Naughton Ave	Belmont	2012	1,970	3	2.5	29-Nov-12	\$1,350,000
1126 North Rd	Belmont	2012	1,840	5	2.5	14-Feb-12	\$905,000
3835 W Naughton Ave	Belmont	2013	3,040	4	3.5	15-Jan-13	\$2,050,000
Average			2,398	3.8	2.8		\$1,306,400

*Includes transactions that occurred between 2008 and 2014, of single family homes built in or after 2008.
Sources: DataQuick, April 2014; Strategic Economics \& Vernazza Wolfe Associates, Inc., 2014.
Figure III-2. Sales of Recently Built Single-Family Attached Units in Redwood City*

Address	City	Complex	Bedrooms	Bathrooms	Square Feet	Year Built	Sale Amount	Price per S.F.
208 Demi Ln	Redwood City	Preserve Townhomes	2	2.5	1,473	2011	\$757,000	\$514
208 Demi Ln	Redwood City	Preserve Townhomes	2	2.5	1,473	2011	\$647,500	\$440
208 Demi Ln	Redwood City	Preserve Townhomes	2	2.5	1,473	2011	\$875,000	\$594
208 Demi Ln	Redwood City	Preserve Townhomes	2	2.5	1,473	2011	\$877,000	\$595
208 Demi Ln	Redwood City	Preserve Townhomes	2	2.5	1,473	2011	\$749,000	\$508
105 Bennie Dr	Redwood City	Preserve Townhomes	3	2.5	1,812	2011	\$727,000	\$401
105 Bennie Dr	Redwood City	Preserve Townhomes	3	2.5	1,812	2011	\$825,500	\$456
105 Bennie Dr	Redwood City	Preserve Townhomes	3	2.5	1,812	2011	\$750,000	\$414
203 Hartstene Dr	Redwood City		3	2.5	1,812	2011	\$1,013,000	\$559
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$735,000	\$382
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$647,000	\$336
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$750,000	\$390
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$790,000	\$411
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$855,000	\$444
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$664,000	\$345
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$747,500	\$389
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$759,500	\$395
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$737,000	\$383
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$779,000	\$405
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$624,500	\$325
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$645,000	\$335
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$769,000	\$400
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$745,000	\$387

Figure III-2. Sales of Recently Built Single-Family Attached Units in Redwood City* (Continued)

Address	City	Complex	Bedrooms	Bathrooms	Square Feet	Year Built	Sale Amount	$\begin{gathered} \hline \text { Price per } \\ \text { S.F. } \end{gathered}$
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$712,000	\$370
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$689,500	\$358
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$780,000	\$405
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$744,000	\$387
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$769,000	\$400
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$895,500	\$465
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$799,000	\$415
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$808,000	\$420
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$785,000	\$408
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$718,000	\$373
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$815,000	\$424
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$860,000	\$447
217 Keech Dr	Redwood City	Preserve Townhomes	3	2.5	1,924	2011	\$1,005,000	\$522
302 Bethel Ln	Redwood City	Preserve Townhomes	3	3.5	2,198	2011	\$884,500	\$402
302 Bethel Ln	Redwood City	Preserve Townhomes	3	3.5	2,198	2011	\$771,000	\$351
302 Bethel Ln	Redwood City	Preserve Townhomes	3	3.5	2,198	2011	\$869,000	\$395
302 Bethel Ln	Redwood City	Preserve Townhomes	3	3.5	2,198	2011	\$730,000	\$332
302 Bethel Ln	Redwood City	Preserve Townhomes	3	3.5	2,198	2011	\$750,000	\$341
302 Bethel Ln	Redwood City	Preserve Townhomes	3	3.5	2,198	2011	\$809,500	\$368
302 Bethel Ln	Redwood City	Preserve Townhomes	3	3.5	2,198	2011	\$674,500	\$307
302 Bethel Ln	Redwood City	Preserve Townhomes	3	3.5	2,198	2011	\$794,500	\$361
Average			2.9	2.68	1,912	2011	\$775,716	\$410

*Includes transactions that occurred through Mid-2013, of townhomes built in or after 2008.
Sources: DataQuick, April 2014; Strategic Economics \& Vernazza Wolfe Associates, Inc., 2014.

Figure III-3. Sales of Recently Built Condominium Units in San Carlos*

Address	City	Bedrooms	Bathrooms	Square Feet	Year Built	Date Sold	Year Sold	Sale Amount
Price per								
S.F.								

Figure III-3. Sales of Recently Built Condominium Units in San Carlos* (Continued)

Address	City	Bedrooms	Bathrooms	Square Feet	Year Built	Date Sold	$\begin{aligned} & \text { Year } \\ & \text { Sold } \end{aligned}$	Sale Amount	$\begin{gathered} \text { Price per } \\ \text { S.F. } \\ \hline \end{gathered}$
1001 Laurel St Apt 215	San Carlos	2	2	1,094	2009	26-Jan-11	2011	\$535,000	\$489.03
1001 Laurel St Apt 217	San Carlos	2	2	1,094	2009	21-Dec-11	2011	\$555,000	\$507.31
1001 Laurel St Apt 226	San Carlos	2	2	1,138	2009	29-Mar-11	2011	\$599,000	\$526.36
1001 Laurel St Apt 309	San Carlos	2	2	1,094	2009	31-Aug-11	2011	\$592,000	\$541.13
1001 Laurel St Apt 311	San Carlos	2	2	1,094	2009	10-Feb-11	2011	\$587,500	\$537.02
1001 Laurel St Apt 314	San Carlos	2	2	1,094	2009	26-Jan-11	2011	\$581,000	\$531.08
1001 Laurel St Apt 315	San Carlos	2	2	1,094	2009	17-Feb-11	2011	\$557,000	\$509.14
1001 Laurel St Apt 317	San Carlos	2	2	1,094	2009	7-Dec-11	2011	\$585,500	\$535.19
1001 Laurel St Apt 320	San Carlos	2	2	1,094	2009	16-Nov-11	2011	\$515,000	\$470.75
1001 Laurel St Apt 323	San Carlos	2	2	1,494	2009	27-Jan-11	2011	\$746,000	\$499.33
1001 Laurel St Apt 324	San Carlos	2	2	1,094	2009	29-Aug-11	2011	\$515,000	\$470.75
1001 Laurel St Apt 326	San Carlos	2	2	1,138	2009	16-Feb-11	2011	\$596,000	\$523.73
1001 Laurel St Apt 401	San Carlos	2	2	1,094	2009	21-Dec-11	2011	\$612,000	\$559.41
1001 Laurel St Apt 405	San Carlos	2	2	1,094	2009	27-Apr-11	2011	\$618,500	\$565.36
1001 Laurel St Apt 406	San Carlos	2	2	1,138	2009	1-Sep-11	2011	\$614,000	\$539.54
1001 Laurel St Apt 408	San Carlos	2	2	1,094	2009	16-Jun-11	2011	\$595,500	\$544.33
1001 Laurel St Apt 411	San Carlos	2	2	1,094	2009	20-Oct-11	2011	\$605,000	\$553.02
1001 Laurel St Apt 413	San Carlos	2	2	1,094	2009	8-Apr-11	2011	\$586,000	\$535.65
1001 Laurel St Apt 416	San Carlos	2	2	1,094	2009	21-Nov-11	2011	\$569,000	\$520.11
1001 Laurel St Apt 422	San Carlos	2	2	1,138	2009	18-Aug-11	2011	\$613,500	\$539.10
1001 Laurel St Unit 108	San Carlos	2	2	1,094	2009	4-May-11	2011	\$695,000	\$635.28
1001 Laurel St Unit 219	San Carlos	2	2	1,318	2009	18-Feb-11	2011	\$538,000	\$408.19
1001 Laurel St Unit 319	San Carlos	2	2	1,318	2009	10-Jan-11	2011	\$560,500	\$425.27
1001 Laurel St Unit 407	San Carlos	2	2	1,094	2009	23-Jun-11	2011	\$608,500	\$556.22
641 Cedar St Unit 204	San Carlos	2	2	1,178	2009	17-Mar-11	2011	\$535,000	\$454.16
641 Cedar St Unit 205	San Carlos	2	2	1,085	2009	28-Dec-11	2011	\$500,000	\$460.83
1001 Laurel St Apt 311	San Carlos	2	2	1,094	2009	29-Jun-12	2012	\$619,000	\$565.81
1001 Laurel St Apt 406	San Carlos	2	2	1,138	2009	28-Jun-12	2012	\$615,000	\$540.42
1001 Laurel St Apt 419	San Carlos	2	2	1,494	2009	16-Feb-12	2012	\$765,000	\$512.05
641 Cedar St Unit 103	San Carlos	2	2	1,178	2009	27-Jan-12	2012	\$484,000	\$410.87
1001 Laurel St Unit 214	San Carlos	2	2	1,094	2009	1-Feb-13	2013	\$657,000	\$600.55
1001 Laurel St Unit 319	San Carlos	2	2	1,318	2009	20-Jun-13	2013	\$760,000	\$576.63
1001 Laurel St Unit 407	San Carlos	2	2	1,094	2009	2-Apr-13	2013	\$655,000	\$598.72
641 Cedar St Unit 104	San Carlos	2	2	1,178	2009	10-Jan-13	2013	\$537,000	\$455.86

Figure III-3. Sales of Recently Built Condominium Units in San Carlos* (Continued)
\(\left.$$
\begin{array}{llccccccc}\hline \text { Address } & \text { City } & \text { Bedrooms } & \text { Bathrooms } & \text { Square Feet } & \text { Year Built } & \text { Date Sold } & \begin{array}{c}\text { Year } \\
\text { Sold }\end{array} & \begin{array}{c}\text { Sale } \\
\text { Amount }\end{array}
$$

\hline Price per

S.F.\end{array}\right]\)| $\$ 680,000$ |
| :--- |
| 641 Cedar St Unit 205 |
| San Carlos |
| 1001 Laurel St Apt 423 |
| San Carlos |

*Includes transactions that occurred through Mid-2013, of condominiums built in or after 2008.
Sources: DataQuick, April 2014; Strategic Economics \& Vernazza Wolfe Associates, Inc., 2014.

Figure III-4. Asking Rents of Recently Built Apartment Units in Redwood City

Project	Address	City	Year Built	Bedrooms	Bathrooms	Units	$\begin{gathered} \text { Average } \\ \text { Size } \end{gathered}$	Average Rent	Rent per SF
201 Marshall	201 Marshall St	Redwood City	2014	0	1	10	634	\$2,495	\$3.94
201 Marshall	201 Marshall St	Redwood City	2014	1	1 to 2	64	1,030	\$3,378	\$3.28
201 Marshall	201 Marshall St	Redwood City	2014	2	1 to 2	39	1,129	\$4,260	\$3.77
Radius	640 Veteran's Dr	Redwood City	2014	1	1	150	840	\$3,100	\$3.69
Radius	640 Veteran's Dr	Redwood City	2014	2	1 to 2	100	1,132	\$3,845	\$3.40
Radius	640 Veteran's Dr	Redwood City	2014	3	2	14	1,289	\$4,093	\$3.18
Township Apartments	333 Main St	Redwood City	2013	1	1	41	725	\$3,063	\$4.22
Township Apartments	333 Main St	Redwood City	2013	2	2	88	1,080	\$3,600	\$3.33
Township Apartments	333 Main St	Redwood City	2013	3	2	3	1,224	\$3,300	\$2.70
Woodside	885 Woodside Rd	Redwood City	2011	1	1	14	840	\$3,365	\$4.01
Woodside	885 Woodside Rd	Redwood City	2011	2	2	21	1,424	\$5,290	\$3.72
Percent of Total/Weighted Average by Unit Type									
Studio				0	1	1.80\%	634	\$2,495	\$3.94
1-bedroom				1	1 to 2	49\%	868	\$3,174	\$3.66
2-bedroom				2	1 to 2	46\%	1,138	\$3,945	\$3.47
3-bedroom				3	2	3.10\%	1,277	\$3,953	\$3.10

Sources: CoStar Group, 2014; Strategic Economics \& Vernazza Wolfe Associates, Inc., 2014.

Figure III-5. Belmont Prototypes

Prototype	Unit Type	Number of Units	$\begin{aligned} & \text { Net Area } \\ & \text { (SF) } \\ & \hline \end{aligned}$	Unit Sales Pricel Monthly Rent	Price or Rent per SF
Single-Family Detached (For-Sale)					
Wood siding wood frame	4 BD/3 BA	10	2,400	\$1,306,000	\$544
8 units per acre					
Attached garage					
Net Residential Area			24,000		
Single-Family Attached (For-Sale)					
Type V wood frame	$3 \mathrm{BD} / 3 \mathrm{BA}$	50	1,900	\$776,000	\$408
12 units per acre					
Tuck-under podium parking					
Net Residential Area			95,000		
Condominiums (For-Sale)					
Type V wood frame	$1 \mathrm{BD} / 1 \mathrm{BA}$	2	900	\$485,000	\$539
57 units per acre	$2 \mathrm{BD} / 2 \mathrm{BA}$	45	1,100	\$598,000	\$544
Subterranean parking	$3 \mathrm{BD} / 2 \mathrm{BA}$	2	1,300	\$768,000	\$591
Net Residential Area (Net SF)			53,900		
Average Net SF per Unit			1,100		
Apartments (Rental)					
Type V wood frame	Studio	2	600	\$2,500	\$4.17
40 units per acre	$1 \mathrm{BD} / 1$ to 2 BA	49	900	\$3,200	\$3.56
Podium parking	$2 \mathrm{BD} / 1$ to 2 BA	46	1,100	\$3,900	\$3.55
	$3 \mathrm{BD} / 2 \mathrm{BA}$	3	1,300	\$4,000	\$3.08
Net Residential Area (Net SF)			99,800		
Average Net SF per Unit			998		

Sources: Strategic Economics \& Vernazza Wolfe Associates, Inc., 2014.

HOUSEHOLD INCOMES OF BUYERS AND RENTERS

Using the sales prices and rents shown in Figure III-4, the next step is to calculate the annual household incomes of the buyers of new for-sale single-family detached, single-family attached and condominium units, and the renters occupying new apartment units. The household income is a key input to the IMPLAN3 economic impact analysis described in Section IV of this report.

Incomes of Single-Family Detached Units Buyers

To calculate the household income of buyers of new single-family detached units, the analysis used typical mortgage terms for San Mateo County: 20 percent down payment, 30 year fixed rate mortgage, and 4.35 percent interest rate. Belmont's property tax rate was estimated from recent budget documents. Total housing costs, including monthly payments for mortgage payments, property taxes and insurance, are assumed to be 35 percent of available monthly income. The result of the income estimates for households buying new single-family detached units is shown in Figure III6. As shown in the calculations, for single-family detached units, household are estimated to have an income over $\$ 200,000$.

Incomes of Single-Family Attached Units Buyers

For buyers of single-family attached units, the analysis applied the same typical mortgage terms as those used for single-family detached units, and Belmont's property tax rates. Homeowner association (HOA) fees were based on a review of HOA fees at similar new single-family attached developments in San Mateo County. Buyer households are expected to spend 35 percent of available monthly income on total housing costs, including monthly payments for mortgage payments, property taxes, insurance and HOA fees. Figure III-7 shows the result of the income estimates for households buying new single-family attached units. As shown in the calculations, for single-family attached units, household incomes are estimated to be just under \$150,000.

Incomes of Condominium Buyers

To calculate the household income of buyers of new condominium units, the analysis also applied the same mortgage terms typical for San Mateo County, and Belmont’s property tax rate. Total housing costs, including monthly payments for mortgage payments, property taxes, insurance and homeowner association (HOA) fees, are assumed to be 35 percent of available monthly income. The result of the income estimates for households buying new condominium units is shown in Figure III-8. As shown in the calculations, owners of one- and two-bedroom condominium units have a household income of between $\$ 100,000$ and $\$ 150,000$, while owners of three-bedroom units have a household income just over \$150,000.

Incomes of Apartment Renters

For renter households, maximum annual housing costs are assumed to be 30 percent of gross household income, a standard established in California's Health and Safety Code Sections 50052.5 and 50053, although it is acknowledged that many renters in San Mateo County spend a higher share of their gross income on housing. The estimated household income of renters varies by unit type, as indicated in Figure III-9. Households renting studios have an estimated annual income of \$100,000. One-bedroom, two-bedroom and three-bedroom unit renter households have estimated household incomes of $\$ 128,000$ and $\$ 156,000$ and $\$ 160,000$, respectively.

Figure III-6. Estimated Annual Household Incomes of Buyers of Single-Family Detached Units

	Single-Family Detached Units
	4 BD/3 BA
Number of Households	10
Sales Price	$\$ 1,306,000$
Down Payment (a)	$\$ 261,200$
Loan Amount	$\$ 1,044,800$
Monthly Debt Service (b)	$\$ 5,201$
Annual Debt Service	$\$ 62,414$
Annual Property Taxes (c)	$\$ 14,036$
Fire and Hazard Insurance (d)	$\$ 4,571$
Annual Housing Costs (e)	$\$ 81,020$
Household Income	$\$ 231,486$
Notes:	
(a) Down payment is estimated at 20\% of sales price, based on Freddie Mac data for San Mateo County.	
(b) Interest rate is estimated at 4.35\% for a 30-year term, based on Freddie Mac data,	
http://www.freddiemac.com/pmms/pmms30.htm.	
(c) Property tax rate is 1.0747% based on Belmont CAFR.	
(d) Industry standard, estimated at 0.35%.	
(e) Homeownership housing burden is estimated at 35\%, based on California Health \& Safety Code Sections 50052.5 and	
50053.	
Sources: Strategic Economics \& Vernazza Wolfe Associates, Inc., 2014.	

Figure III-7. Estimated Annual Household Incomes of Buyers of Single-Family Attached Units

	Single-Family Attached Units
3 BD/3 BA	

Notes:
(a) Down payment is estimated at 20% of sales price, based on Freddie Mac data for San Mateo County.
(b) Interest rate is estimated at 4.35% for a 30 -year term, based on Freddie Mac data,
http://www.freddiemac.com/pmms/pmms30.htm.
(c) Property tax rate is 1.0747% based on Belmont CAFR.
(d) Homeownership association (HOA) fees are estimated at $\$ 250$ per month, based on fees charged at a sample of recently built projects in San Mateo County.
(e) Industry standard
(f) Homeownership housing burden is estimated at 35\%, based on California Health \& Safety Code Sections 50052.5 and 50053.

Sources: Strategic Economics \& Vernazza Wolfe Associates, Inc., 2014.

Figure III-8. Estimated Annual Household Incomes of Buyers of Condominium Units

		Condominium Units	
	$\mathbf{1}$ BD/1 BA	$\mathbf{2 ~ B D / 2 ~ B A ~}$	
Number of Households	2	45	2
Sales Price	$\$ 485,000$	$\$ 598,000$	$\$ 768,000$
Down Payment (a)	$\$ 97,000$	$\$ 119,600$	$\$ 153,600$
Loan Amount	$\$ 388,000$	$\$ 478,400$	$\$ 614,400$
Monthly Debt Service (b)	$\$ 1,932$	$\$ 2,382$	$\$ 3,059$
Annual Debt Service	$\$ 23,178$	$\$ 28,578$	$\$ 36,703$
Annual Property Taxes (c)	$\$ 5,212$	$\$ 6,427$	$\$ 8,254$
Annual HOA Fees (d)	$\$ 5,400$	$\$ 5,400$	$\$ 5,400$
Fire and Hazard Insurance (e)	$\$ 1,698$	$\$ 2,093$	$\$ 2,688$
Annual Housing Costs (f)	$\$ 35,488$	$\$ 42,498$	$\$ 53,044$
Household Income	$\$ 101,394$	$\$ 121,423$	$\$ 151,555$
Notes:			
(a) Down payment is estimated at 20\% of sales price, based on Freddie Mac data for San Mateo County.			
(b) Interest rate is estimated at 4.35\% for a 30-year term, based on Freddie Mac data,			
http://www.freddiemac.com/pmms/pmms30.htm.			
(c) Property tax rate is 1.0747% based on Belmont CAFR.			
(d) Homeownership association (HOA) fees are estimated at $\$ 450$ per month, based on review of new condominiums in			
San Mateo County.			
(e) Industry standard			
(f) Homeownership housing burden is estimated at 35\%, based on California Health \& Safety Code Sections 50052.5 and			
50053.			

Figure III-9. Estimated Annual Household Incomes of Renters of Apartment Units

	Apartment Unit Type			
	Studio	$\mathbf{1}$ BD/1 to 2 BA	2 BD/1 to 2 BA	3 BD/2 BA
Number of Households	2	49	46	3
Monthly Rent	$\$ 2,500$	$\$ 3,200$	$\$ 3,900$	$\$ 4,000$
Annual Housing Costs	$\$ 30,000$	$\$ 38,400$	$\$ 46,800$	$\$ 48,000$
Housing Costs as \% of Income (a)	30%	30%	30%	30%
Household Income	$\$ 100,000$	$\$ 128,000$	$\$ 156,000$	$\$ 160,000$
Notes:				
(a) Renter housing burden is estimated at 30\%, based on California Health \& Safety Code Sections 50052.5 and 50053.				
Sources: Strategic Economics \& Vernazza Wolfe Associates, Inc., 2014.				

IV. ECONOMIC IMPACT ANALYSIS (IMPLAN3)

The buyers and renters of the new market-rate single-family detached units, single-family attached units, condominiums and apartments create new spending in the local economy. These new expenditures can be linked to new jobs, many of which pay low wages. The job and wage impacts related to new market-rate housing units are measured using IMPLAN3, an economic impact analysis tool. An economics consulting firm, Applied Development Economics (ADE) undertook the IMPLAN3 analysis with the information on residential prototypes and associated buyers' and renters incomes provided by Strategic Economics and Vernazza Wolfe Associates Inc. In this section of the report, the methodology and results of the IMPLAN3 analysis are described in detail.

THE IMPLAN3 MODEL

The IMPLAN model is an economic dataset that has been used for over 35 years to measure the economic impacts of new investments and spending using the industrial relationships defined through an Input-Output Model. The IMPLAN model can estimate economic impacts resulting from changes in industry output, employment, income, and other measures. The latest version of this model is referred to as IMPLAN3.

For this analysis, the input-output model used data specific to San Mateo County in order to estimate the multiplier effects resulting from the households that could potentially rent or buy new housing units in Belmont. In this case, all of the multiplier effects derive from new demand for goods and local services (including government) that new households would generate within San Mateo County. It does not account for economic impacts generated during the construction period, or any economic impacts that would occur outside of the county.

The economic impacts estimated by the model generally fall into one of three categories - direct, indirect, or induced. For this analysis, the direct impacts represent the household income brought into the community by new residents. Indirect impacts would normally result from demand for commodities and services provided by suppliers for business operations. (Because the direct impacts come only from household spending, and not from business activity, the indirect effects were not calculated.) Induced impacts represent the potential effects resulting from household spending at local establishments by the new workers hired as a result of increased household expenditures. These impacts affect all sectors of the economy, but primarily affect retail businesses, health services, personal services providers, and government services. The employment estimates provided by the IMPLAN3 model cover all types of jobs, including full and part time jobs.

The first analysis undertaken by the IMPLAN3 model estimated the household demand for retail goods and personal services. It is assumed that buyers and renters of new housing units in Belmont increase demand for goods and services within San Mateo County. This demand is based on the projected incomes of renters and owners for each prototype. The IMPLAN3 model's calculations are based on changes in household income, which adjusts the gross income to account for the payment of income taxes and savings. ${ }^{4}$

The second analysis estimated the induced impacts, or multiplier effects of new household spending in terms of jobs and wage income. The jobs and income calculations are focused on the induced jobs that would be created through local spending by the new households. The input-output model

[^3]estimates the job impacts by detailed industry sector. The analysis took the detailed industry impact estimates and distributed them by occupational category. The occupational employment data used in the analysis came from the California Employment Development Department (EDD) Labor Market Information Division, and aggregates together data for all of California. After converting the industry level data into occupational employment, the income distribution was calculated using the occupational wage data for the San Francisco-San Mateo-Redwood City Metropolitan Division (MD) that combines San Francisco, Marin, and San Mateo counties. The average wage by occupation was used to make this calculation. The 2014 (first quarter) occupational wage data used in the analysis comes from California's EDD.

It should be noted that the figures used in the IMPLAN3 analysis reflect the demand for retail goods and services by net, new San Mateo County households. The multiplier impacts assume that all of this spending will remain in San Mateo County. ${ }^{5}$

HOUSEHOLD INCOME IMPACTS

Since the IMPLAN3 Model bases its household income impacts on Consumer Expenditure Survey data, income categories are used in the model instead of continuous income information. Because of this feature, the analysis sorted the renters and buyers of new market rate units into income groups, and then calculated the economic impacts based on the total income calculated for each income group.

Figure IV-1 below summarizes the household income data for single-family detached and singlefamily attached households, while Figure IV-2 summarizes household income data for condominium and apartment households. As shown, all 10 single-family detached buyer households have an average income over $\$ 150,000$, with a total combined household income of $\$ 2.3$ million. All buyers of single-family attached units have an average income between $\$ 100,000$ and $\$ 150,000$, and their aggregate income amounts to $\$ 7.3$ million. Among the 49 condominium buyer households, 47 have an average household income between $\$ 100,000$ and $\$ 150,000$ and 2 have an average income over $\$ 150,000$. The aggregate household income of the condominium buyer households is nearly $\$ 7$ million. The rental prototype has 51 households in the $\$ 100,000-\$ 150,000$ income category, and 49 households in the over $\$ 150,000$ income category. The combined total household income for renter households is $\$ 14.1$ million. These total income figures, adjusted to account for taxes and savings, were used as inputs for the IMPLAN3 analysis.

EMPLOYMENT AND WAGE IMPACTS

Based on the incomes of the new buyers and renters, the next step is to determine employment and wage impacts from each prototype. Estimated employment and wages are shown in Figure IV-3 for each IMPLAN3 industry sector, indicating the number of induced jobs, the industry's share of total employment growth by prototype, and the average wage by industry. Figure IV-4 provides the same IMPLAN3 output data, organized by occupation rather than industry, for each prototype. As shown in both figures, many of the induced jobs generated within San Mateo County are in low-wage sectors and occupations related to retail and food services (restaurants). However, a significant proportion of induced jobs are in higher-paying resident-serving categories such as health care and government.

[^4]
ESTIMATING WORKER-HOUSEHOLDS

Recognizing that many households have more than one wage-earner, the next step is to calculate the number of worker-households by dividing the total number of new workers by the average number of wage-earners per household in Belmont. According to the U. S. Census Bureau 2008-2012 American Community Survey 3 -Year Estimate, Belmont has an average of 1.56 workers per household. The number of induced jobs is divided by 1.56 to calculate the total number of worker households. Figure IV-5 illustrates this calculation.

ESTIMATING DEMAND FOR AFFORDABLE HOUSING

To estimate the demand for affordable housing, it is first necessary to determine the incomes of the new households. Once the average annual household income of worker households is calculated, the next step is to categorize households into area median income (AMI) levels based on the thresholds set by California Department of Housing and Community Development for San Mateo County. The average household size in Belmont is 2.5 (rounded to 3.0), according to the US Census American Community Survey 5-Year Estimates 2008-2012. The income threshold for a three-person household in San Mateo County was therefore used to determine the AMI categories of each new worker household. ${ }^{6}$ Figure IV-6 indicates that of the 5.2 new worker households associated with a singlefamily detached development, there will be 4.2 households that need affordable housing. The comparable figures for single-family attached, condominium and apartment developments are, respectively, 18, 14.5 and 29.9 households.

[^5]Figure IV-1. Estimated Incomes by Income Categories for Buyers of Single-Family Detached and Single-Family Attached Units

	Single-Family Detached Prototype			
Aggregate				
Household				
Incomes			\quad	Average
:---:				
Household				
Income	\quad	New		
:---:				
Income Category				

Sources: Applied Development Economics, Inc., 2015; Vernazza Wolfe Associates, Inc. and Strategic Economics, 2015.

Figure IV-2. Estimated Incomes by Income Categories for Buyers of Condominium Units, and for Renters of Apartment Units

Income Category	Condominium Prototype			Apartment Prototype		
	New Households	Aggregate Household Incomes	Average Household Income	New Households	Aggregate Household Incomes	Average Household Income
Less than \$10,000	0	\$0	n/a	0	0	n/a
\$10,000-\$15,000	0	\$0	n/a	0	0	n/a
\$15,000-\$25,000	0	\$0	n/a	0	\$0	n/a
\$25,000-\$35,000	0	\$0	n/a	0	\$0	n/a
\$35,000-\$50,000	0	\$0	n/a	0	\$0	n/a
\$50,000-\$75,000	0	\$0	n/a	0	\$0	n/a
\$75,000-\$100,000	0	\$0	n/a	0	\$0	n/a
\$100,000-\$150,000	47	\$5,666,828	\$120,571	51	\$6,472,000	\$126,902
Over \$150,000	2	\$303,111	\$151,555	49	\$7,656,000	\$156,245
Total	49	\$5,969,938	\$121,835	100	\$14,128,000	\$141,280

Sources: Applied Development Economics, Inc., 2015; Vernazza Wolfe Associates, Inc. and Strategic Economics, 2015.

Figure IV-3. Estimated Job and Wage Impacts of Prototypes by Industry

Industry (NAICS code)		Average Wage	Single-Family Detached Prototype $\%$ Of Jobs Jobs		Single-FamilyAttached Prototype\%obs OfJobs		CondominiumPrototype\% OfJobs \quadJobs		ApartmentPrototype \% Of JobsJobs	
11	Forestry, fishing, hunting, and agriculture	\$38,309	0.01	0\%	0.02	0\%	0.02	0\%	0.04	0\%
21	Mining	\$70,505	0.00	0\%	0.01	0\%	0.01	0\%	0.02	0\%
22	Utilities	\$74,144	0.01	0\%	0.07	0\%	0.05	0\%	0.10	0\%
23	Construction	\$68,376	0.18	2\%	0.67	2\%	0.54	2\%	1.19	2\%
31	Manufacturing	\$66,946	0.02	0\%	0.10	0\%	0.08	0\%	0.16	0\%
42	Wholesale trade	\$62,797	0.10	1\%	0.44	1\%	0.35	1\%	0.72	1\%
44	Retail trade	\$54,808	1.27	15\%	5.54	16\%	4.46	16\%	9.09	16\%
48	Transportation \& warehousing	\$49,308	0.19	2\%	0.73	2\%	0.59	2\%	1.26	2\%
51	Information	\$77,312	0.11	1\%	0.49	1\%	0.39	1\%	0.79	1\%
52	Finance \& insurance	\$71,830	0.41	5\%	1.77	5\%	1.42	5\%	2.91	5\%
53	Real estate \& rental \& leasing Professional, scientific \& technical	\$66,316	0.39	5\%	1.81	5\%	1.45	5\%	2.88	5\%
54	services	\$91,389	0.25	3\%	1.01	3\%	0.81	3\%	1.72	3\%
55	Management of companies \& enterprises Admin, support, waste mgt, remediation	\$88,955	0.01	0\%	0.05	0\%	0.04	0\%	0.07	0\%
56	services	\$54,197	0.34	4\%	1.47	4\%	1.19	4\%	2.43	4\%
61	Educational services	\$62,584	0.37	4\%	1.20	3\%	0.98	3\%	2.28	4\%
62	Health care and social assistance	\$68,778	1.46	18\%	6.96	20\%	5.59	20\%	10.99	19\%
71	Arts, entertainment \& recreation	\$49,614	0.28	3\%	1.17	3\%	0.94	3\%	1.97	3\%
72	Accommodation \& food services Other services (except public	\$31,520	1.16	14\%	5.38	15\%	4.33	15\%	8.60	15\%
81	administration)	\$53,217	0.83	10\%	3.66	10\%	2.95	10\%	5.98	10\%
91	Government	\$70,961	0.83	10\%	2.56	7\%	2.10	7\%	5.01	9\%
	Total		8.20	100\%	35.09	100\%	28.29	100\%	58.21	100\%

Sources: Applied Development Economics, Inc, 2015; Vernazza Wolfe Associates, Inc. and Strategic Economics, 2015.

Figure IV-4. Estimated Job and Wage Impacts of Prototypes by Occupation

SOC Code	Occupational Title	Average Annual Wage	Single-Family Detached Jobs	Single-Family Attached Jobs	Condominium Jobs	Apartment Jobs
11-0000	Management Occupations	\$146,537	0.38	1.61	1.30	2.69
13-0000	Business and Financial Operations Occupations	\$95,505	0.40	1.60	1.30	2.74
15-0000	Computer and Mathematical Occupations	\$104,996	0.14	0.56	0.45	0.96
17-0000	Architecture and Engineering Occupations	\$100,605	0.07	0.26	0.21	0.48
19-0000	Life, Physical, and Social Science Occupations	\$96,012	0.07	0.26	0.21	0.46
21-0000	Community and Social Services Occupations	\$54,663	0.19	0.78	0.63	1.30
23-0000	Legal Occupations	\$140,841	0.05	0.19	0.16	0.34
25-0000	Education, Training, and Library Occupations	\$59,459	0.32	1.14	0.92	2.05
27-0000	Arts, Design, Entertainment, Sports, Media Occupations	\$70,952	0.12	0.52	0.42	0.88
29-0000	Healthcare Practitioners and Technical Occupations	\$111,876	0.52	2.43	1.95	3.89
31-0000	Healthcare Support Occupations	\$41,374	0.25	1.16	0.93	1.84
33-0000	Protective Service Occupations	\$61,618	0.21	0.74	0.61	1.37
35-0000	Food Preparation and Serving-Related Occupations	\$27,076	1.23	5.63	4.53	9.05
37-0000	Building and Grounds Cleaning and Maintenance	\$33,575	0.26	1.11	0.89	1.84
39-0000	Personal Care and Service Occupations	\$33,716	0.59	2.62	2.11	4.27
41-0000	Sales and Related Occupations	\$54,767	1.08	4.76	3.84	7.81
43-0000	Office and Administrative Support Occupations	\$46,720	1.27	5.34	4.31	8.92
45-0000	Farming, Fishing, and Forestry Occupations	\$34,770	0.01	0.03	0.03	0.06
47-0000	Construction and Extraction Occupations	\$63,327	0.16	0.58	0.47	1.04
49-0000	Installation, Maintenance, and Repair Occupations	\$58,564	0.30	1.26	1.01	2.09
51-0000	Production Occupations	\$41,105	0.16	0.67	0.54	1.11
53-0000	Transportation and Material Moving Occupations	\$42,255	0.43	1.82	1.47	3.05
	Total all occupations		8.20	35.09	28.29	58.21

Sources: Applied Development Economics, 2015; IMPLAN3 input-output model, 2015; California Labor Market Information Division, 2015.

Figure IV-5. Induced Employment Impacts, Belmont

Project Prototype	Single-Family Detached	Single-Family Attached	Condominium	Apartment
Number of Units	10	50	50	100
Induced Employment (Workers)	8	35	28	58
Average Number of Workers per Household	1.56	1.56	1.56	1.56
New Worker Households	5.25	22.45	18.10	37.23

Source: Applied Development Economics, 2015; Strategic Economics \& Vernazza Wolfe Associates, Inc. 2015.

Figure IV-6. New Worker Households by Income Group for Single-Family Detached, Single-Family Attached, Condominium and Apartment Prototypes

	Income Thresholds (3-Person Household)	Single-Family Detached	Single-Family Attached	Condominium	Apartment
Worker Households by Income Category					
Households Requiring Affordable Housing	$\$ 50,900$	1.3	6.0	4.8	9.7
Very Low Income (<=50\% AMI)	$\$ 81,450$	1.3	5.7	4.6	9.5
Low Income (51-80\% AMI)	$\$ 111,250$	1.5	6.3	5.1	10.6
Moderate Income (81-120\% AMI)		4.2	18.0	14.5	29.9
Subtotal Very Low, Low, Moderate Income	$>111,250$	1.0	4.4	3.6	7.4
Above Moderate Income Households (>120\% AMI)		5.2	22.4	18.1	37.2
Total All Worker Households					

Source: Applied Development Economics, Inc., 2015; Strategic Economics \& Vernazza Wolfe Associates, Inc. 2015.

V. AFFORDABILITY GAP ANALYSIS

Estimating the housing affordability gap is necessary to calculate the maximum potential housing impact fee. This affordability gap analysis was conducted at the county-wide level so that it can be applied to all the jurisdictions in San Mateo County participating in the multi-city nexus study. ${ }^{7}$ This section summarizes the approach to calculating the housing affordability gap and the results of the analysis.

METHODOLOGY

The housing affordability gap is defined as the difference between what very low, low, and moderate income households can afford to pay for housing and the development cost of new, modest housing units. Calculating the housing affordability gap involves the following three steps:

1. Estimating affordable rents and housing prices for households in target income groups.
2. Estimating development costs of building new, modest housing units, based on current cost and market data.
3. Calculating the different between what renters and owners can afford to pay for housing and the cost of development of rental and ownership units.

The housing affordability gap is estimated at a countywide level, and assumed to be the same for all the jurisdictions participating in the multi-city nexus studies, for the following reasons:

- Both the California Department of Housing and Community Development Department (HCD) and U.S. Housing and Urban Development Department (HUD) define the ability to pay for housing at the county (rather than the city) level. Existing affordable housing studies and policies in most jurisdictions rely on these countywide area median income (AMI) estimates published by HCD or by HUD. This analysis uses 2014 income limits published by California Department of Housing and Community Development (HCD).
- Construction costs for housing and commercial development do not vary dramatically between different jurisdictions in San Mateo County, because the cost of labor and materials is regional in nature.

Although land costs vary widely in San Mateo County, the study estimated a single land value for the county based on data provided by developers of recently built projects. These costs are at the low end of recent land sales, as described below. Additionally, because the land costs used in the analysis are from 2012 and 2013, and land values have escalated rapidly since then, the resulting affordability gap will be slightly lower than if the analysis incorporated 2014 land costs, providing a conservative estimate of the affordability gap.

[^6]
ESTIMATING AFFORDABLE RENTS AND SALES PRICES

The first step in calculating the housing affordability gap is to determine the maximum amount that households at the targeted income levels can afford to pay for housing. For eligibility purposes, most affordable housing programs define very low income households as those earning approximately 50 percent or less of area median income (AMI), low income households as those earning between 51 and 80 percent of AMI, and moderate income households as those earning between 81 and 120 percent of AMI. In order to ensure that the affordability of housing does not use the top incomes in each category, the analysis uses a point within the income ranges for the low and moderate income groups. ${ }^{8}$

Figure V-1 and Figure V-2 show the calculations for rental housing. The maximum affordable monthly rent is calculated as 30 percent of gross monthly household income, minus a deduction for utilities. For example, a very low income, three-person household could afford to spend $\$ 1,273$ on total monthly housing costs. After deducting for utilities, $\$ 1,220$ a month is available to pay for rent.

Figure V-3 and Figure V-4 demonstrate housing affordability for homeowners. Homeowners are assumed to pay a maximum of 35 percent of gross monthly income on total housing costs, depending on income level. The maximum affordable price for for-sale housing is then calculated based on the total monthly mortgage payment that a homeowner could afford, using standard loan terms used by CalHFA programs and many private lenders for first-time homebuyers, including a five percent down payment (Figure V-3). For example, a moderate income, three-person household could afford to spend $\$ 2,974$ a month on total housing costs, allowing for the purchase of a $\$ 348,526$ home. Key assumptions used to calculate the maximum affordable rents and housing prices are discussed below.

- Unit types: For rental housing, the analysis included studios, one-, two-, and three-bedroom units. For for-sale housing, one-, two-, and three-bedroom units were included. These unit types represent the affordable and modest market-rate apartment and condominium units available in San Mateo County. Condominiums were used to represent modest for-sale housing because single-family homes in San Mateo County tend to be significantly more expensive than condominiums.
- Occupancy and household size assumptions. Because income levels for affordable housing programs vary by household size, calculating affordable unit prices requires defining household sizes for each unit type. Consistent with California Health and Safety Code Section $50052.5(\mathrm{~h})$, unit occupancy was generally estimated as the number of bedrooms plus one. For example, a studio unit is assumed to be occupied by one person, a one bedroom unit is assumed to be occupied by two people, and so on. Several adjustments to this general assumption were made in order to capture the full range of household sizes. In particular, it is assumed that one-bedroom condominiums could be occupied by one- or two-person households, and three-bedroom apartments and condominiums could be occupied by four- or five-person households. ${ }^{9}$

[^7]- Targeted income levels for rental housing: For rental housing, affordable rents were calculated for very low income, low income, and moderate income households (see Figure V1 and Figure V-2). For eligibility purposes, most affordable housing programs define very low income households as those earning 50 percent or less of area median income (AMI), low income households as those earning between 51 and 80 percent of AMI, and moderate income households as those earning between 81 and 120 percent of AMI. However, defining affordable housing expenses based at the top of each income range would result in prices that are not affordable to most of the households in each category. Thus, this analysis does not use the maximum income level for all of the income categories. Instead, for rental housing, 70 percent of AMI is used to represent low income households and 90 percent of AMI is used to represent moderate income households.
- Targeted income levels for ownership housing For ownership housing, affordable home prices were calculated only for moderate income households (see Figure V-3 and Figure V4). Higher income limits are used for ownership than for rental housing because ownership housing is more expensive to purchase and maintain. It is assumed that moderate income homebuyers may earn slightly less than the maximum for that income category (110 percent of AMI).
- Maximum monthly housing costs. ${ }^{10}$ For all renters, maximum monthly housing costs are assumed to be 30 percent of gross household income. For homebuyers, 35 percent of gross income is assumed to be available for monthly housing costs, reflecting the higher incomes of this group. ${ }^{11}$ These standards are based on California's Health \& Safety Code Sections 50052.5 and 50053.
- Utilities. The monthly utility cost assumptions are based on utility allowances calculated by the U.S. Department of Housing and Urban Development for San Mateo County. ${ }^{12}$ Both renters and owners are assumed to pay for heating, cooking, other electric, and water heating. In addition, owners are assumed to pay for water and trash collection. ${ }^{13}$
- Mortgage terms and costs included for ownership housing. The mortgage calculations are based on the terms typically offered to first-time homebuyers (such as the terms offered by the California Housing Finance Authority), which is a 30 -year mortgage with a five percent down payment. A five percent down payment standard is also used by many private lenders for first-time homebuyers. Based on recent interest rates to first-time buyers, the analysis assumes a 5.375 percent annual interest rate. ${ }^{14}$ In addition to mortgage payments and utilities,

[^8]monthly ownership housing costs include homeowner association (HOA) dues, ${ }^{15}$ property taxes, ${ }^{16}$ private mortgage insurance, ${ }^{17}$ and hazard and casualty insurance. ${ }^{18}$

[^9]Figure V-1. Calculation of Affordable Rents in San Mateo County by Household Size, 2014

Persons per Household (HH)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Very Low Income (50\% AMI)					
Maximum Household Income at 50\% AMI	$\$ 39,600$	$\$ 45,250$	$\$ 50,900$	$\$ 56,550$	$\$ 61,050$
Maximum Monthly Housing Cost (a)	$\$ 990$	$\$ 1,131$	$\$ 1,273$	$\$ 1,414$	$\$ 1,526$
Utility Deduction	$\$ 29$	$\$ 40$	$\$ 53$	$\$ 68$	$\$ 68$
Maximum Available for Rent (HH Size) (b)	$\$ 961$	$\$ 1,091$	$\$ 1,220$	$\$ 1,346$	$\$ 1,458$
Low Income (70\% AMI)				$\$ 72,100$	$\$ 77,875$
Maximum Household Income at 70\% AMI	$\$ 50,470$	$\$ 57,680$	$\$ 64,890$	$\$ 1,803$	$\$ 1,947$
Maximum Monthly Housing Cost (a)	$\$ 1,262$	$\$ 1,442$	$\$ 1,622$	$\$ 68$	$\$ 68$
Utility Deduction	$\$ 29$	$\$ 40$	$\$ 53$	$\$ 1,735$	$\$ 1,879$
Maximum Available for Rent (HH Size) (b)	$\$ 1,233$	$\$ 1,402$	$\$ 1,569$		
				$\$ 92,700$	$\$ 100,125$
Moderate Income (90\% AMI)	$\$ 64,890$	$\$ 74,160$	$\$ 83,430$	$\$ 2,503$	
Maximum Household Income at 90\% AMI	$\$ 1,622$	$\$ 1,854$	$\$ 2,086$	$\$ 2,318$	$\$ 2,503$
Maximum Monthly Housing Cost (a)	$\$ 29$	$\$ 40$	$\$ 53$	$\$ 68$	$\$ 68$
Utility Deduction	$\$ 1,593$	$\$ 1,814$	$\$ 2,033$	$\$ 2,250$	$\$ 2,435$
Maximum Available for Rent (HH Size) (b)					

Notes:
(a) 30 percent of maximum monthly household income.
(b) Maximum monthly housing cost minus utility deduction.

Acronyms:
AMI: Area median income
HH: Household
Sources: California Department of Housing and Community Development, 2014; U.S. Department of Housing and Urban Development, 2013; Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2014.

Figure V-2. Calculation of Affordable Rents in San Mateo County by Unit Type, 2014

	Studio (1 person)	1 Bedroom (2 persons)	2 Bedroom (3 persons)	3 Bedroom (4 and 5 persons)
Affordable Sales Price by Unit Type (a)	$\$ 961$	$\$ 1,091$	$\$ 1,220$	$\$ 1,402$
Very Low Income (50\% AMI)	$\$ 1,233$	$\$ 1,402$	$\$ 1,569$	$\$ 1,807$
Low Income (70\% AMI)	$\$ 1,593$	$\$ 1,814$	$\$ 2,033$	$\$ 2,342$
Moderate Income (90\% AMI)				

(a) Affordable rents are calculated as follows: Studios are calculated as one-person households; One-bedroom units are calculated as two-person households; Two-bedroom units are calculated as three-person households; Three-bedroom units are calculated as an average of four and five person households. See Figure V-1.
Sources: California Department of Housing and Community Development, 2014; U.S. Department of Housing and Urban Development, 2013; Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2014.

Figure V-3. Calculation of Affordable Sales Prices in San Mateo County by Household Size, 2014

Persons per Household (HH)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
Moderate Income (110\% AMI)					
Maximum Household Income at 110\% AMI (a)	$\$ 79,310$	$\$ 90,640$	$\$ 101,970$	$\$ 113,300$	$\$ 122,375$
Maximum Monthly Housing Cost (b)	$\$ 2,313$	$\$ 2,644$	$\$ 2,974$	$\$ 3,305$	$\$ 3,569$
Monthly Deductions					
\quad Utilities	$\$ 106$	$\$ 106$	$\$ 130$	$\$ 156$	$\$ 156$
HOA Dues	$\$ 300$	$\$ 300$	$\$ 300$	$\$ 300$	$\$ 300$
\quad Property Taxes and Insurance (c)	$\$ 517$	$\$ 607$	$\$ 690$	$\$ 773$	$\$ 844$
Monthly Income Available for Mortgage Payment (d)	$\$ 1,390$	$\$ 1,631$	$\$ 1,854$	$\$ 2,076$	$\$ 2,269$
Maximum Mortgage Amount (e)	$\$ 248,195$	$\$ 291,274$	$\$ 331,100$	$\$ 370,795$	$\$ 405,155$
Maximum Affordable Sales Price - HH Size (f)	$\$ 261,258$	$\$ 306,604$	$\$ 348,526$	$\$ 390,311$	$\$ 426,479$
Notes:					

(a) Calculated as 110 percent of the median household income reported by HCD for each household size.
(b) Maximum housing cost is estimated at 35 percent of household income for homebuyers.
(c) Assumes annual property tax rate of 1.18 percent of sales price; annual private mortgage insurance premium rate of 0.89 percent of mortgage amount;
annual hazard and casualty insurance rate of 0.35 percent of sales price.
(d) Maximum monthly housing cost minus deductions
(e) Assumes 5.375 percent interest rate and 30 year loan term
(f) Assumes 5 percent down payment (75 percent loan-to-value ratio)

Acronyms:
AMI: Area median income
HH: Household
HOA: Home owners association
Sources: California Department of Housing and Community Development, 2014; U.S. Department of Housing and Urban Development, 2013; Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2014.

Figure V-4. Calculation of Affordable Sales Prices in San Mateo County by Unit Type, 2014

Affordable Sales Price by Unit Type (a)	1 Bedroom (1 and 2 persons)	2 Bedroom (3 persons)	3 Bedroom (4 and 5 persons)
Moderate Income (110\% AMI)	$\$ 283,931$	$\$ 348,526$	$\$ 408,395$
Notes:			
(a) One-bedroom units are calculated as an average of one- and two-person households; Two-bedroom units are calculated as			
three-person households; and three-bedroom units are calculated as an average of four and five person households. See Figure			
V-3			
Sources: California Department of Housing and Community Development, 2014; U.S. Department of Housing and Urban			
Development, 2013; Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2014.			

ESTIMATING HOUSING DEVELOPMENT COSTS

The second step in calculating the housing affordability gap is to estimate the cost of developing new, modest housing units. Modest housing is defined slightly differently for rental and ownership housing. For rental housing, the costs and characteristics of modest housing are similar to recent projects developed in San Mateo County by the affordable rental housing sector. Modest for-sale housing is assumed to be non-luxury multifamily (condominium) development because single-family homes in San Mateo County tend to be significantly more expensive than condominiums; many of the new single-family homes in the county are custom-built luxury units that are too costly to meet the standard for modest housing.

The calculation of housing development costs used in the housing affordability gap requires several steps. Because the gap covers both rental housing and for-sale housing, it is necessary to estimate costs for each. The following describes the data sources used to calculate rental and for-sale housing development costs.

Rental Housing

Rental housing development costs were based on pro forma data obtained from three recent affordable housing projects in San Mateo County. Figure V-5 shows the location and description of these projects and summarizes the information that was used to generate a per-square-foot cost of $\$ 410$ used in the cost analysis. These costs include site acquisition costs, hard costs (on- and off-site improvements), soft costs (such as design, city permits and fees, construction interest, and contingencies), and developer fees. The costs from the rental housing pro formas were also crossreferenced against proprietary pro formas available to the consultant team from other private development projects in order to ensure accuracy.

Since these projects assumed state and federal funding, the labor costs included in the original pro formas reflect the prevailing wage requirement imposed by state and local governments. The costs shown in Figure V-5 have been adjusted to subtract out the prevailing wage requirement because the development cost model used in the housing affordability gap analysis does not assume receipt of government subsidies. A rule of thumb used by local economists who assist affordable housing developers in obtaining public financing, is to estimate that, under the prevailing wage requirement, labor costs are 25 percent higher than would otherwise be the case. Therefore, on-site and off-site improvement costs obtained from the original pro formas are reduced by 25 percent to reflect actual labor costs that would apply to construction projects that do not have these requirements. ${ }^{19}$ Finally, on average, land acquisition costs accounted for 20 percent or less of these total adjusted costs.

[^10]Figure V-5. Affordable Housing Project Pro Forma Data

Project Description	Project 1	Project 2	Project 3
Location	San Mateo	San Mateo	San Bruno
Year Built	2013	2010	2011
Land Area (acres)	1.05	1	0.63
Gross Building Area (square feet)	106,498	127,718	42,688
Net Building Area (square feet)	56,075	67,850	33,297
Number of Units	60	68	42
Parking Type	Podium	Underground	Structure
Parking Spaces/ Unit	1.82	1.55	1.0
	$\$ 3,157,000$	$\$ 5,543,600$	$\$ 2,096,500$
Land Acquisition Costs	$(\$ 69$ per SF of	$(\$ 127$ per SF of	$(\$ 76$ per SF of
	land)	land)	land)
Project Costs per SF of Net Building Area			
Land Cost (a)	$\$ 56$	$\$ 82$	$\$ 63$
Land Cost (per sq. ft. of net building area)	$\$ 56$	$\$ 82$	$\$ 63$
Hard Costs (b)	$\$ 228$	$\$ 216$	$\$ 187$
Soft Costs (c)	$\$ 93$	$\$ 99$	$\$ 114$
Developer Fees	$\$ 25$	$\$ 21$	$\$ 39$
Total Project Costs (d)	$\$ 402$	$\$ 417$	$\$ 403$

Notes:

(a) Calculated per square foot of net building area.
(b) Excludes prevailing wage requirements for on-site and off-site hard costs.
(c) Includes design, engineering, city permits and fees, construction interest, contingencies, legal, etc.
(d) Total costs include developer fees.

Acronyms:
SF: Square feet
Source: Confidential Pro Forma Data; Vernazza Wolfe Associates, Inc; Strategic Economics, 2014.
To ensure that the land value assumptions used in the rental development cost estimates (ranging from $\$ 69$ to $\$ 127$ per square foot of land) were reasonable, the consultant team analyzed recent sales of vacant properties in San Mateo County using DataQuick, a commercial vendor that tracks real estate transactions. Cities with fewer than three vacant land transactions were excluded from the analysis. As shown below in Figure V-6, land values in San Mateo County are highly variable from city to city, ranging from $\$ 45$ to $\$ 300$ per square foot; the average sales price for the selected sites in the County was $\$ 189$ per square foot. The analysis demonstrates the land cost assumptions used to calculate rental housing costs (in Figure V-5) represent the lower range of current land values.

Figure V-6. Sales of Vacant Lands in San Mateo County, 2014

	Number Transactions	Average Sales Price	Average Site Size (SF)	Average Sales Pricel SF Land
Belmont	4	$\$ 920,000$	6,383	$\$ 165$
Menlo Park	6	$\$ 1,239,500$	5,802	$\$ 220$
Pacifica	4	$\$ 487,000$	7,221	$\$ 111$
San Bruno	13	$\$ 933,769$	3,259	$\$ 295$
San Mateo	8	$\$ 1,314,188$	5,424	$\$ 300$
Unincorporated San Mateo County	4	$\$ 224,250$	5,194	$\$ 45$
Average of Records		$\$ 853,118$	5,547	$\$ 189$

Notes: Includes data from cities with 3 or more transactions of vacant land in San Mateo Country from January through May 2014. Records with missing sales or land area information were eliminated.
Acronyms:
SF: Square feet
Sources: Dataquick, January-May 2014; Vernazza Wolfe Associates, Inc; Strategic Economics, 2014.

For-Sale Housing

Since affordable housing developers do not typically build for-sale housing in San Mateo County, the cost of developing new, modest for-sale housing was estimated using two data methods: the first method used price data for recently built condominium units as a proxy for development costs; the second approach estimated development costs based on published market and cost data for similar projects in San Mateo County. Each of these cost estimate approaches is described in more detail below.

Review of condominium sales data - In this approach, average sales prices from condominium units built in San Mateo County between 2008 and 2012 are used as a proxy for development costs. ${ }^{20}$ This approach assumes that construction costs, land costs, soft costs, and developer profit are all included in the unit sales price. Using data provided by DataQuick, the consultant team analyzed sales prices of condominium units of various sizes in the seven cities that experienced condominium development that exceeded 10 units in the aggregate between 2008 and 2012. These seven cities included Brisbane, East Palo Alto, Millbrae, Redwood City, San Carlos, San Mateo City, and South San Francisco. The other jurisdictions in San Mateo County experienced little or no condominium development during this time period. Figure V-7 summarizes the information that was used to generate a per-square-foot cost for condominium development of $\$ 420$.

Cost estimate of hypothetical condominium project - The second approach relied on published industry data sources and recent financial feasibility studies to estimate the development costs of a hypothetical condominium project, as described in Figure V-8. ${ }^{21}$ Land costs were estimated based on recent DataQuick land transactions shown in Figure V-6. RS Means cost data, adjusted for the Bay

[^11]Area's construction costs, was used to calculate hard costs. Based on a review of recent financial feasibility analyses in the Bay Area, soft costs were estimated at 30 percent of hard costs, and developer fees and profits were estimated at 12 percent of hard and soft costs. Using this second method, the development costs are estimated at $\$ 495$ per net square foot of building area. In order to ensure that the results of the affordability gap analysis are conservative, the lower development cost estimate of $\$ 420$ per net square foot was selected for ownership units.

Figure V-7. Condominium Sales: Average Unit Characteristics and Prices for Selected Cities in San Mateo County (2008-2012)

	Average Number of Bathrooms	Average Number of Bedrooms	Average Square Feet	Average Price per Square Foot	Average Unit Price
Jurisdiction	1.2	1.5	892	$\$ 413$	$\$ 368,625$
Easbane Palo Alto	1.8	1.3	1,029	$\$ 340$	$\$ 349,991$
Millbrae	1.9	2	1,290	$\$ 429$	$\$ 553,893$
Redwood City	2.7	2.9	1,933	$\$ 402$	$\$ 776,655$
San Carlos	1.8	1.8	1,066	$\$ 508$	$\$ 541,932$
San Mateo City	2.3	2.2	1,545	$\$ 439$	$\$ 677,430$
South San Francisco	1.7	1.8	981	$\$ 427$	$\$ 418,740$
Aggregate	1.9	1.9	1,248	$\$ 423$	$\$ 527,401$
Sources: DataQuick, Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2014.					

Figure V-8. Estimate of Development Costs of Hypothetical Condominium Project

Building Characteristics	
Land Area (SF)	110,727
Gross Building Area (SF)	188,235
Net Building Area (SF)	160,000
Number of Units	100
Parking Type	Underground
Floor-area ratio (FAR)	1.7
Density (units per acre)	39
Average Unit Size	1,600
Land Acquisition Costs per Square Foot (a)	$\$ 189$
Development Cost	Cost per Net SF
Land Cost (b)	$\$ 131$
Hard Costs	$\$ 250$
Soft Costs (c)	$\$ 75$
Developer Fees (d)	$\$ 39$
Total Development Costs	$\$ 495$

Notes:

(a) Land value is calculated based on DataQuick records of vacant land transactions in the county. See Figure IV-6.
(b) Calculated based on RS Means cost estimates per square foot of net building area.
(c) Estimated at 30 percent of hard costs. Includes design, engineering, city permits and fees, construction interest, contingencies, legal, etc.
(d) Estimated at 12 percent of hard costs and soft costs.

Acronyms:
SF: square feet
Sources: RS Means, 2014; DataQuick 2014; Recent financial feasibility studies; Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2014.

Cost Estimates by Unit Size

The data sources described above also provided information on estimated unit sizes. Unit size information is needed to translate costs/sales prices per square foot to unit costs. Unit sizes are estimated separately for rental and for-sale units. For the rental units, the recent inventory of projects developed by MidPen Housing was analyzed. For ownership units, the average sizes of recently built condominium units (Figure V-7) were analyzed.

Figure V-9 provides the unit sizes and development cost estimates for rental units. Per-unit development costs were calculated by multiplying average unit sizes by the per-square foot development costs of $\$ 410$. Rental unit costs range from $\$ 205,000$ for studio units to $\$ 479,700$ for three-bedroom units.

Figure V-10 summarizes the costs of condominium units. The per-unit costs were derived by multiplying the average unit size by the development cost per square foot of $\$ 420$. Condominium development costs range from $\$ 357,000$ for one-bedroom units to $\$ 672,000$ for three-bedroom units.

Figure V-9. Rental Housing Unit Sizes and Development Costs

Unit Type	Estimated Cost per Net SF	Unit Size (net SF)	Development Costs
Studio	$\$ 410$	500	$\$ 205,000$
One bedroom	$\$ 410$	700	$\$ 287,000$
Two bedroom	$\$ 410$	970	$\$ 397,700$
Three bedroom	$\$ 410$	1,170	$\$ 479,700$
Acronyms:			
SF: Square feet			

Figure V-10. For-Sale Housing Unit Sizes and Development Costs

Unit Type	Estimated Cost per Net SF	Unit Size (net SF)	Development Costs
One bedroom	$\$ 420$	850	$\$ 357,000$
Two bedroom	$\$ 420$	1,200	$\$ 504,000$
Three bedroom	$\$ 420$	1,600	$\$ 672,000$
Acronyms:			
SF: Square feet			

CALCULATING THE HOUSING AFFORDABILITY GAP

The final step in the analysis is to calculate the housing affordability gap, or the difference between what renters and owners can afford to pay and the total cost of developing new units. The purpose of the housing affordability gap calculation is to help determine the fee amount that would be necessary to cover the cost of developing housing for very low, low, and moderate income households. The calculation does not assume the availability of any other source of housing subsidy because not all "modest" housing is built with public subsidies, and tax credits and tax-exempt bond financing are highly competitive programs that will not always be available to developers of modest housing units.

Figure V-11 shows the housing affordability gap calculation for rental units. For each rental housing unit type and income level, the gap is defined as the difference between the per-unit cost of development and the supportable debt per unit. The supportable debt is calculated based on the net operating income generated by an affordable monthly rent, incorporating assumptions about operating expenses (including property taxes, insurance, etc.), reserves, vacancy and collection loss, and mortgage terms based on discussions with local affordable housing developers. Because household sizes are not uniform and the type of units each household may occupy is variable, the average housing affordability gap is calculated by averaging the housing affordability gaps for the various unit sizes.

Figure V-12 shows the housing affordability gap calculation for ownership units. For each unit type, the gap is calculated as the difference between the per-unit cost of development and the affordable sales price for each income level. As with rental housing, the average housing affordability gap for each income level is calculated by averaging the housing affordability gaps across unit sizes in order to reflect that households in each income group vary in size, and may occupy any of these unit types.

Finally, the tenure-neutral estimates of the housing affordability gap were estimated for very low, low, and moderate income households (Figure V-13). Because very low and low income households that are looking for housing in today's market are much more likely to be renters, an ownership gap was not calculated for these income groups. The rental gap represents the overall affordability gap for these two income groups. On the other hand, moderate income households could be either renters or owners. Therefore, the rental and ownership gaps are averaged for this income group to calculate the overall affordability gap for moderate income households. The calculated average affordability gap per unit is $\$ 280,783$ for very low income households; $\$ 240,477$ for low income households, and $\$ 175,558$ for moderate income households. The housing affordability gap is highest for very low income households because those households with higher incomes can afford to pay more for housing.

Figure V-11. Housing Affordability Gap Calculation for Rental Housing

Income Level and Unit Type	Unit Size (SF)	Maximum Monthly Rent (a)	Annual Income	Net Operating Income (b)	Available for Debt Service (c)	Supportable Debt (d)	Development Costs (e)	Affordability Gap
Very Low Income (50\% AMI)								
Studio	500	\$961	\$11,532	\$3,455	\$2,764	\$36,552	\$205,000	\$168,448
1 Bedroom	700	\$1,091	\$13,095	\$4,940	\$3,952	\$52,259	\$287,000	\$234,741
2 Bedroom	970	\$1,220	\$14,634	\$6,402	\$5,122	\$67,725	\$397,700	\$329,975
3 Bedroom	1,170	\$1,402	\$16,824	\$8,483	\$6,786	\$89,733	\$479,700	\$389,967
Average Affordability Gap								\$280,783
Low Income (70\% AMI)								
Studio	500	\$1,233	\$14,793	\$6,553	\$5,243	\$69,323	\$205,000	\$135,677
1 Bedroom	700	\$1,402	\$16,824	\$8,483	\$6,786	\$89,733	\$287,000	\$197,267
2 Bedroom	970	\$1,569	\$18,831	\$10,389	\$8,312	\$109,902	\$397,700	\$287,798
3 Bedroom	1,170	\$1,807	\$21,680	\$13,096	\$10,477	\$138,535	\$479,700	\$341,165
Average Affordability Gap								\$240,477
Moderate Income (90\% AMI)								
Studio	500	\$1,593	\$19,119	\$10,663	\$8,530	\$112,796	\$205,000	\$92,204
1 Bedroom	700	\$1,814	\$21,768	\$13,180	\$10,544	\$139,417	\$287,000	\$147,583
2 Bedroom	970	\$2,033	\$24,393	\$15,673	\$12,539	\$165,796	\$397,700	\$231,904
3 Bedroom	1,170	\$2,342	\$28,108	\$19,202	\$15,362	\$203,127	\$479,700	\$276,573
Average Affordability Gap								\$187,066

(a) Affordable rents are based on State of California Housing and Community Development FY 2014 Income Limits for San Mateo County. See Figure V-2.
(b) Amount available for debt. Assumes 5% vacancy and collection loss and $\$ 7,500$ per unit per year for operating expenses and reserves based on recently built (2012-2014) and
proposed affordable housing projects in the San Francisco Bay Area.
(c) Assumes 1.25 Debt Coverage Ratio.
(d) Assumes $6.38 \%, 30$ year loan. Calculations based on annual payments.
(e) Assumes $\$ 410 / \mathrm{SF}$ for development costs based on comparable project pro formas.
(f) Calculated as the difference between development costs and supportable debt.

Acronyms:
SF: Square feet
AMI: Area median income
Sources: Housing and Community Development, 2014; Selected San Mateo Rental Housing Pro Formas; Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2015.

Figure V-12. Housing Affordability Gap Calculation for For-Sale Condominium Housing

Income Level and Unit Type	Unit Size (SF)	Affordable Sales Price (a)	Development Costs (b)	Affordability Gap (c)
Moderate Income (110\% of AMI)				
1 Bedroom	850	$\$ 283,931$	$\$ 357,000$	$\$ 73,069$
2 Bedroom	1,200	$\$ 348,526$	$\$ 504,000$	$\$ 155,474$
3 Bedroom	1,600	$\$ 408,395$	$\$ 672,000$	$\$ 263,605$
Average Affordability Gap			$\$ 164,049$	

Notes:
(a) See calculation in Figure V-3
(b) Assumes $\$ 420 / \mathrm{SF}$ for development costs, based on recent condominium sales data.
(c) Calculated as the difference between development cost and affordable sales price.

Acronyms:
SF: Square feet
AMI: Area median income
Sources: DataQuick Sales Data, 2008-2012; Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2015.

Figure V-13. Average Housing Affordability Gap by Income Group

	Rental Gap	Ownership Gap	Average Affordability Gap
Income Level	$\$ 280,783$	$\mathrm{~N} / \mathrm{A}$	$\$ 280,783$
Lery Low Income (50\% AMI)	$\$ 240,477$	$\mathrm{~N} / \mathrm{A}$	$\$ 240,477$
Moderate Income ($90 \%-110 \%$ AMI) (b)	$\$ 187,066$	$\$ 164,049$	$\$ 175,558$
Notes:			
(a) Low income households are defined at 70 percent of AMI for renters and 80 percent of AMI for owners.			
(b) Moderate income households are defined at 90 percent of AMI for renters and 110 percent AMI for owners.			
Acronyms:			
AMI: Area median income.			
Source: Vernazza Wolfe Associates, Inc. and Strategic Economics, 2015.			

VI. NEXUS FEES AND REQUIREMENTS

This section builds on the findings of the previous analytical steps to calculate maximum justified housing impact fees for each prototype.

MAXIMUM FEE CALCULATION

To derive the maximum nexus-based fee, the housing affordability gap is applied to the number of lower-income worker households linked to the prototypes. This is the basis for developing an estimate of the total affordability gap for each prototype. The total gap for each prototype is then divided by the number of units in the development prototype to calculate a single maximum fee per unit.

Figure VI-1 presents the results of the nexus fee calculation for the single-family detached prototype. The per unit housing affordability gap number is multiplied by the number of income-qualified worker households linked to the prototype to estimate the total gap. The total affordability gap is then divided by the number of units in the prototype to derive the maximum fee per unit, estimated at $\$ 96,485$ per unit. The same steps are taken for the single-family attached, condominium and apartment prototypes to estimate the maximum fee per unit, as shown in Figures VI-2, VI-3 and VI-4. The calculated maximum fees are $\$ 83,381$ per single-family attached unit, $\$ 68,574$ per condominium unit, and $\$ 68,843$ per apartment unit.

The fees can also be calculated on per-square-foot basis by dividing the total gap by the net residential area for each prototype. The maximum fee per square foot is $\$ 40$ for the single-family detached prototype (Figure VI-5), $\$ 44$ for the single-family attached prototype (Figure VI-6), $\$ 62$ for the condominium prototype (Figure VI-7), and $\$ 69$ per square foot for the apartment prototype (Figure VI-8).

The per-unit and per-square-foot fees shown in the tables below express the total nexus-based fees for new market-rate single-family detached, single-family attached, condominium and rental apartment development in Belmont. They represent the maximum justified fees based on the nexus analysis that could be imposed on new development. The city may adopt fees or require mitigations at a lower level than these justified fees, depending on policy considerations.

Figure VI-1. Maximum Per-Unit Fee for Single-Family Detached Prototype

Income Category	Average Affordability Gap (per Household)	Number Worker Households	Maximum Fee Revenues for Prototype	Number Units in Prototype	Total Fee Per Unit
Very Low Income (<=50\% AMI)	\$280,783	1.3	\$374,496		
Low Income (51-80\% AMI) Moderate Income (81-120\%	\$240,477	1.3	\$323,463		
AMI)	\$175,558	1.5	\$266,895		
Total			\$964,855	10	\$96,485

Sources: California Housing and Community Development; Individual lenders; Affordable and market-rate project pro formas; DataQuick, 2014; RS Means, 2014; IMPLAN 3 via Applied Development Economics, 2015; Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2015.

Figure VI-2. Maximum Per-Unit Fee for Single-Family Attached Prototype

Income Category	Average Affordability Gap (per Household)	Number Worker Households	Maximum Fee Revenues for Prototype	Number Units in Prototype	Total Fee Per Unit
Very Low Income (<=50\% AMI)	$\$ 280,783$	6.0	$\$ 1,687,711$		
Low Income (51-80\% AMI)	$\$ 240,477$	5.7	$\$ 1,382,195$		
Moderate Income (81-120\% AMI)	$\$ 175,558$	6.3	$\$ 1,099,152$		
Total			$\$ 4,169,058$	50	$\$ 83,381$
Sources: California Housing and Community Development; Individual lenders; Affordable and market-rate project pro formas; DataQuick, 2014; RS Means,					

Sources: California Housing and Community Development; Individual lenders; Affordable and market-rate project pro formas; DataQuick, 2014; RS Means, 2014; IMPLAN 3 via Applied Development Economics, 2015; Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2015.

Figure VI-3. Maximum Per-Unit Fee for Condominium Prototype

Income Category	Average Affordability Gap (per Household)	Number Worker Households	Maximum Fee Revenues for Prototype	Number Units in Prototype	Total Fee Per Unit
Very Low Income (<=50\% AMI)	$\$ 280,783$	4.8	$\$ 1,358,128$		
Low Income (51-80\% AMI)	$\$ 240,477$	4.6	$\$ 1,114,469$		
Moderate Income (81-120\% AMI)	$\$ 175,558$	5.1	$\$ 887,516$		
Total			$\$ 3,360,113$	49	$\$ 68,574$
Sources: California Housing and Community Development; Individual lenders; Affordable and market-rate project pro formas; DataQuick, 2014; RS Means,					

Sources: California Housing and Community Development; Individual lenders; Affordable and market-rate project pro formas; DataQuick, 2014; RS Means, 2014; IMPLAN 3 via Applied Development Economics, 2015; Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2015.

Figure VI-4. Maximum Per-Unit Fee for Apartment Prototype

Income Category	Average Affordability Gap (per Household)	Number Worker Households	Maximum Fee Revenues for Prototype	Number Units in Prototype	Total Fee Per Unit
Very Low Income (<=50\% AMI)	$\$ 280,783$	9.7	$\$ 2,733,674$		
Low Income (51-80\% AMI)	$\$ 240,477$	9.5	$\$ 2,294,242$		
Moderate Income (81-120\% AMI)	$\$ 175,558$	10.6	$\$ 1,856,415$	100	$\$ 68,843$
\quad Total			$\$ 6,884,331$	100	

Sources: California Housing and Community Development; Individual lenders; Affordable and market-rate project pro formas; DataQuick, 2014; RS Means, 2014; IMPLAN 3 via Applied Development Economics, 2015; Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2015.

Figure VI-5. Maximum Fee per SF for Single-Family Detached Prototype

Income Category	Average Affordability Gap (per Household)	Number Worker Households	Maximum Fee Revenues for Prototype	Net Residential Area (SF)	Total Fee Per SF
Very Low Income (<=50\% AMI)	\$280,783	1.3	\$374,496		
Low Income (51-80\% AMI)	\$240,477	1.3	\$323,463		
Moderate Income (81-120\% AMI)	\$175,558	1.5	\$266,895		
Total			\$964,855	24,000	\$40

Figure VI-6. Maximum Fee per SF for Single-Family Attached Prototype

Income Category	Average Affordability Gap (per Household)	Number Worker Households	Maximum Fee Revenues for Prototype	Net Residential Area (SF)	Total Fee Per SF
Very Low Income (<=50\% AMI)	$\$ 280,783$	6.0	$\$ 1,687,711$		
Low Income (51-80\% AMI)	$\$ 240,477$	5.7	$\$ 1,382,195$		
Moderate Income (81-120\% AMI)	$\$ 175,558$	6.3	$\$ 1,099,152$		
Total			$\$ 4,169,058$	95,000	$\$ 44$

Figure VI-7. Maximum Fee per SF for Condominium Prototype

Income Category	Average Affordability Gap (per Household)	Number Worker Households	Maximum Fee Revenues for Prototype	Net Residential Area (SF)	Total Fee Per SF
Very Low Income (<=50\% AMI)	$\$ 280,783$	4.8	$\$ 1,358,128$		
Low Income (51-80\% AMI)	$\$ 240,477$	4.6	$\$ 1,114,469$		
Moderate Income (81-120\% AMI)	$\$ 175,558$	5.1	$\$ 887,516$		
Total			$\$ 3,360,113$	53,900	$\$ 0$
Sources: California Housing and Community Development; Individual lenders; Affordable and market-rate project pro formas; DataQuick, 2014; RS Means,					
2014; IMPLAN 3 via Applied Development Economics, 2015; Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2015.					

Figure VI-8. Maximum Fee per SF for Apartment Prototype

Income Category	Average Affordability Gap (per Household)	Number Worker Households	Maximum Fee Revenues for Prototype	Net Residential Area (SF)	Total Fee Per SF
Very Low Income (<=50\% AMI)	$\$ 280,783$	9.7	$\$ 2,733,674$		
Low Income (51-80\% AMI)	$\$ 240,477$	9.5	$\$ 2,294,242$		
Moderate Income (81-120\% AMI)	$\$ 175,558$	10.6	$\$ 1,856,415$		
Total		$\$ 6,884,331$	99,800	$\$ 69$	

Sources: California Housing and Community Development; Individual lenders; Affordable and market-rate project pro formas; DataQuick, 2014; RS Means,
2014; IMPLAN 3 via Applied Development Economics, 2015; Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2015

INCLUSIONARY HOUSING REQUIREMENTS

At present, Belmont has not enacted an inclusionary housing ordinance, but plans to do so in the near future. In addition to establishing the maximum impact fees for new development projects, the nexus results described above can also be the basis for establishing the requirements of an inclusionary zoning ordinance. The principal way to estimate the equivalent inclusionary percentage from the nexus analysis is by taking the total number of households requiring affordable housing (for each prototype) and dividing this number by the number of total units in each prototype. Figure VI-9 presents the results of this estimate. The analysis indicates that the nexus-based equivalent inclusionary rates are 30 percent for condominiums and apartments, 36 percent for single-family attached homes, and 42 percent for single-family detached homes.

Figure VI-9. Calculated Inclusionary Rates Based on Potential Housing Impact Fees

	Households Requiring Affordable Housing	Total Units in Prototype	Calculated Inclusionary Rate
Single-Family Detached	4.2	10	42%
Single-Family Attached	18.0	50	36%
Condominiums	14.5	49	30%
Apartments	29.9	100	30%

Sources: Vernazza Wolfe Associates, Inc. \& Strategic Economics, 2015.

SUMMARY OF ASSUMPTIONS

The housing impact fee nexus analysis methodology utilizes conservative assumptions that result in a lower estimate of the nexus-supported maximum fee. Some of the conservative assumptions undertaken in the analysis include the following:

- Prices and rental rates for new development. Because there has been little new housing development completed in San Mateo County, the sales prices and rental rates for new market-rate housing are based on older market data. The rental rates and sales prices for projects that are coming on the market today are significantly higher. The use of lower prices and rents results reduces the total nexus fee calculation.
- Economic impact analysis model. The IMPLAN3 model only measures the impacts of new market-rate housing development in San Mateo County. It does not measure any of the impacts that could be occurring in other Bay Area counties. The economic impact analysis is modeled on a household income change approach, which adjusts for income taxes and savings when calculating the employment impacts of new households.
- Cost estimates for affordability gap analysis. The affordability gap analysis measures the difference between what households can afford to pay for housing and the cost of new housing units. To ensure that the gap is conservative, the development cost estimates are based on the lower range of land and construction costs in San Mateo County. In many subareas of the county, including priority-development areas and downtown locations, land costs for housing sites may be higher, particularly under today's market conditions.
- Exclusion of extremely low income households. Although new market-rate housing development could potentially have impacts on affordable housing demand from extremely
low income households, those impacts are not included in the analysis, thereby reducing the total fee calculation.
- Affordability gap for owner households. The calculation of the affordability gap for ownership households only considers moderate-income households. Low and very low income households are not considered in the calculation. This also results in a lower estimate of the maximum fee.
- Overlap analysis. The City is undertaking two impact fee nexus studies at the same time: the commercial linkage fee nexus study and the housing impact fee nexus study. To minimize the potential that some jobs could be double-counted by including the same worker households in both studies, the Consultant Team recommends establishing both the commercial linkage fees and housing impact fees at below 100 percent of the nexus-based maximum.

VII. POLICY CONSIDERATIONS

There are a number of policy considerations that can be taken into account when jurisdictions consider adopting an affordable housing impact fee on new market-rate development. While the nexus study provides the necessary economic analysis for the residential impact fees, it is up to policymakers to decide the fee amount to be charged on new development. This section summarizes the effect of the maximum housing impact fee on overall City permits and fees, and the role of the fee in the City's overall housing strategy.

Comparison to Existing Fees on Residential Development

Figure VII-1 presents information on the impact and permitting fees that the City currently charges on new housing development. The fee calculations are estimates based on the prototype descriptions, and do not necessarily represent the actual city fees charged to specific projects. Belmont's existing fees (excluding the nexus fees) for the residential prototypes are estimated to range from close to $\$ 25,000$ for an apartment unit to almost $\$ 54,000$ for a single-family attached or condominium unit. ${ }^{22}$

Role of Fees in Overall Housing Strategy

Belmont does not currently have residential impact fee or commercial linkage fees. The City does not have an inclusionary zoning ordinance in place for residential projects, but may adopt one pending the results of this nexus study.

If Belmont adopts a new residential impact fee, the revenues could be used either to create a new citywide fund or could be contributed to a countywide fund, such as HEART. The existence of additional local revenue sources such as the residential impact fees can help make certain projects more competitive for outside funding. Revenues generated from a residential impact fee must be spent on housing that benefits the workforce, since the funds stem from affordable housing impacts related to new employment.

The revenues to be collected from a residential impact fee provide an important source of local funding; however, fee revenues do not generally cover the entire funding gap encountered by sponsors of new affordable housing. Additional funding from a variety of sources will remain critical. These funding sources typically include public subsidies from the City of Belmont and San Mateo County, equity from the Low Income Housing Tax Credits, and financing from conventional lenders.

[^12]Figure VII-1. Belmont Total Residential Fees

	Single-Family Detached	Single-Family Attached	Condominiums	Apartments
Number of Units in Prototype	10	50	49	100
Total Existing City Fees and Permits for Prototype (Excluding Nexus Fees)	\$520,478	\$2,690,745	\$2,636,930	\$2,493,410
Existing Fees and Permits per Unit (Excluding Nexus Fees)	\$52,048	\$53,815	\$53,815	\$24,934
Maximum Fees				
Nexus Fee Per Unit	\$96,485	\$83,381	\$68,574	\$68,843
Total Nexus Fees for Prototype	\$964,855	\$4,169,058	\$3,360,113	\$6,884,331
Combined Existing and Nexus Fees for Prototype	\$1,485,333	\$6,859,803	\$5,997,044	\$9,377,741
Combined Fees Per Unit	\$148,533	\$137,196	\$122,389	\$93,777

Potential for Overlap between Residential and Commercial Fees

The City is also undertaking a commercial linkage nexus study simultaneously to this effort, and may soon adopt a commercial linkage fee in addition to the residential impact fee considered in this report. If the City does intend to adopt both fees, it is important to determine whether there is any overlap between the two impact fees, resulting in potential "double-counting" of impacts.

The commercial linkage fee study examined jobs located in new commercial buildings including office/ R\&D/ medical office buildings, retail/ restaurants/ services, and hotels. The nexus analysis then calculated the average wages of the workers associated with each commercial building to derive the annual income of the new worker households. The analysis determines the area median income (AMI) level of the new worker households to identify the number of worker households that would require affordable housing.

The housing impact fee nexus analysis examined households buying or renting new market rate units in the jurisdiction. The household expenditures by these new residents have an economic impact in the county, which can be linked to new jobs. The nexus analysis quantified the jobs linked to new household spending, and then calculated the wages of new workers and the household income of new worker households. Each worker household was then categorized by AMI level to determine the number of households that require affordable housing.

There may be a share of jobs counted in the commercial linkage fee analysis that are also included in the residential nexus analysis, particularly those in the service sector. Other types of jobs counted in the residential nexus analysis are unique to that analysis, and are not included in the commercial linkage fee analysis (for example, public sector employees). The commercial linkage fee analysis is limited to private sector office/ R\&D/ medical office buildings, hotels, and retail/ restaurants/ services space.

There is potential that some jobs could be counted in both analyses, and that the two programs may overlap in mitigating the affordable housing demand from the same worker households. Each of the proposed fees is required to mitigate no more than 100 percent of the demand for affordable units by new worker households. In order to reduce the potential for overlap between the two programs, it is advisable to set both the commercial linkage fees and housing impact fees at below 100 percent of the nexus-based maximum. In this way, when combined, the programs would mitigate less than 100 percent of the impact even if there were overlap in the jobs counted in the two nexus analyses.

Administrative Issues

As with any impact fee, it will be necessary to adjust the housing impact fees on an annual basis. Adjustments are also needed due to possible changes in the affordability gap. However, the relationship between new residential construction and employment growth is unlikely to change in the short run.

It is advisable that the City adjusts its housing impact fee annually by using an annual adjustment mechanism. An adjustment mechanism updates the fees to compensate for inflation in development costs. To simplify annual adjustments, it is recommended that the City select a cost index that is routinely published. While there is no index that tracks changes in Belmont's development costs, including land, specifically, there are a few options to consider.

- The first option is the Consumer Price Index (CPI) Shelter component. The shelter component of the CPI covers costs for rent of primary residence, lodging away from home,
owner's equivalent rent of primary residence, and household insurance. Of the total shelter index, costs associated with the owner's equivalent rent of primary residence constitute 70 percent of total costs entered into the index.
- A second option to adjust the fee for annual inflation is the construction cost index published in the Engineering News Record (ENR). This index is routinely used to update other types of impact fees. Cost index information for the San Francisco region, the smallest geographical area available for this purpose, is available on an annual basis. The ENR cost index measures inflation in construction costs, but it does not incorporate changes in land costs or public fees charged on new development.

Because these indices are readily available, reliable, and relatively simple to use, it is recommended that Belmont use these indices for annual adjustments. However, because both understate the magnitude of inflation, it is recommended that the City base its annual adjustment mechanism on the higher of the two indices (CPI or ENR), using a five-year moving average as the inflation factor.

In addition to revising the fee annually for inflation, the City is encouraged to update the housing impact fee nexus study every five years, or at the very least, update the housing affordability gap used in the basic model. The purpose of these updates is to ensure that the fee is still based on a costrevenue structure that remains applicable in the Belmont housing market. In this way, the fee will more accurately reflect any potential structural changes in the relationships between affordable prices and rents, market-rate prices and rents, and development costs.

VIII. GLOSSARY OF TERMS AND ACRONYMS

GLOSSARY OF TERMS

Affordable Housing: Under state and federal statutes, housing is defined as affordable if housing costs do not exceed 30 to 35 percent of gross household income.

Annual Adjustment Mechanism: Due to inflation in housing construction costs, it is frequently necessary to adjust impact fees. An index, such as the Consumer Price Index (CPI) or a published construction cost index (for example, from the Engineering News Record) is used to revise housing fees to reflect inflation in housing construction costs.

Assisted Housing: Housing that has received public subsidies (such as low interest loans, density bonuses, direct financial assistance, etc.) from federal, state, or local housing programs in exchange for restrictions requiring a certain number of housing units to be affordable to very low-, low-, and moderate-income households.

Consumer price index (CPI): Index that measures changes in the price level of a market basket of consumer goods and services purchased by households.

Employment Densities: The amount of square feet per employee is calculated for each property use that is subject to a commercial development housing linkage fee. Employment densities are used to estimate the number of employees that will work in a new commercial development.

Household: The US Census Bureau defines a household as all persons living in a housing unit whether or not they are related. A single person living in an apartment as well as a family living in a house is considered a household. Households do not include individuals living in dormitories, prisons, convalescent homes, or other group quarters.

Household Income: The total income of all the persons living in a household. Household income is commonly grouped into income categories based upon household size and income, relative to the regional median family income.

Housing Affordability Gap: The affordability gap is defined as the difference between what a household can afford to spend on housing and the market rate cost of housing. Affordable rents and sales prices are defined as a percentage of gross household income, generally between 30 percent and 35 percent of income.

For renters, rental costs are assumed to include the contract rent as well as the cost of utilities, excluding cable and telephone service. The difference between these gross rents and affordable rents is the housing affordability gap for renters. This calculation assumes that 30% of income is paid for gross rent.

For owners, costs include mortgage payments, mortgage insurance, property taxes, property insurance, and homeowner association dues. ${ }^{23}$ The difference between these housing expenses and affordable ownership costs is the housing affordability gap for owners. This calculation assumes that 35% of income is paid for housing costs.

Housing Subsidy: Housing subsidies refer to government assistance aimed at reducing housing sales prices or rents to more affordable levels.

Housing Unit: A housing unit can be a room or group of rooms used by one or more individuals living separately from others in the structure, with direct access to the outside or to a public hall and containing separate toilet and kitchen facilities.

IMPLAN3: A software model that is used to provide a quantitative assessment of the interdependencies between different branches of a regional (or national) economy. The latest model, IMPLAN3, was used in the nexus studies. The major input is household income, and the major output is direct and induced employment reported by industries

Inclusionary Zoning: Inclusionary zoning, also known as inclusionary housing, refers to a planning ordinance that requires that a given percentage of new construction be affordable to households with very low, low, moderate, or workforce incomes.

In-Lieu Fee: A literal definition for an in-lieu fee for inclusionary units would be a fee adopted "in place of" providing affordable units. For the purposes of operating an inclusionary housing program, a public jurisdiction may adopt a fee option for developers that prefer paying fees over providing housing units on- or off-site. A fee study is frequently undertaken to establish the maximum fee that can be charged as an in-lieu fee. This fee study must show that there is a reasonable relationship between the fee and the cost of providing affordable housing.

Market-Rate Housing: Housing which is available on the open market without any public subsidy. The price for housing is determined by the market forces of supply and demand and varies by location.

Nexus Study: In order to adopt a residential housing impact fee or a commercial linkage fee, a nexus study is required. A nexus requires local agencies proposing a fee on a development project to identify the purpose of the fee, the use of the fee, and to determine that there is "a reasonable relationship between the fee's use and the type of development project on which the fee is imposed." A nexus study establishes and quantifies a causal link or "nexus" between new residential and commercial development and the need for additional housing affordable to new employees.

[^13]Linkage Fee: A fee or charge imposed on commercial developers to pay for a development's impact on the need for affordable housing. The fee is based on projected household incomes of new employees that will work in newly created space. The fee varies according to the type of property use.

Prototypes: Prototypes are used for residential and commercial developments in order to define housing impact fees. The prototypes generally represent new development projects built in a community and are used to estimate affordable housing impacts associated with new market rate commercial and residential developments. While the prototypes should be "typical" of what is built, for ease of mathematical computation, they are often expressed as larger developments in order to avoid awkward fractions.

Residential or Housing Impact Fee: A fee imposed on residential development to pay for a development's impact on the need for affordable housing. The fee is based on projected incomes of new employees associated with the expansion of market rate developments. Two steps are needed to define the fees. The first step is the completion of a nexus study, and the second step entails selection of the actual fee amount, which can be below the amount justified by the fee study, but not above that amount.

DEFINITION OF ACRONYMS

AMI:	Area Median Income
CBIA:	California Building Industry Association
EDD:	State of California Employment Development Department
FAR:	Floor-area-ratio
FF\&E:	Furniture, Fixtures, and Equipment
GBA:	Gross Building Area
HCD:	Department of Housing and Community Development (State of California)
NAICS:	North American Industry Classification System
NSF:	Net Square Feet
QCEW:	Quarterly Census of Employment and Wages
R\&D:	Research and development
SF:	Square Feet
TDC:	Total Development Costs

[^0]: ${ }^{1}$ Participating jurisdictions include: Atherton, Belmont, Brisbane, Burlingame, Belmont, Daly City, East Palo Alto, Foster City, Half Moon Bay, Hillsborough, Menlo Park, Millbrae, Pacifica, Portola Valley, Redwood City, San Bruno, San Carlos, San Mateo City, San Mateo County, South San Francisco, and Woodside.

[^1]: ${ }^{2}$ These standards are presented in Section III of this report.

[^2]: ${ }^{3}$ The fee estimates presented above represent the best approximations available from the City of Belmont.

[^3]: ${ }^{4}$ According to IMPLAN Group LLC, when the economic impact is modeled based on household income change, IMPLAN3 will adjust the input for income taxes and savings.

[^4]: ${ }^{5}$ Estimating the retail leakage would require a detailed analysis of retail sales totals for existing businesses in San Mateo County and is beyond the scope of this study.

[^5]: ${ }^{6}$ The average Belmont household size is 2.5, according to the US Census, American Community Survey 5 Year Estimates, 2008-2012. This figure was rounded to 3.0 persons.

[^6]: ${ }^{7}$ Although there is a single housing affordability gap estimate for all jurisdictions in the county, the subsequent steps in the fee calculation considers market and household characteristics for Belmont, generating a unique maximum fee for each jurisdiction in the county, as described in Section V.

[^7]: ${ }^{8}$ For rental housing, 70 percent of AMI is used to represent low income households and 90 percent of AMI is used to represent moderate income households. For ownership housing, it is assumed that moderate income homebuyers may earn slightly less than the maximum for that income category (110 percent of AMI). Higher income limits are used for ownership than for rental housing because ownership housing is more expensive to purchase and maintain.
 ${ }^{9}$ For these unit types, the maximum affordable home price (or rent) is calculated as the average price (or rent) that the relevant household sizes can afford to pay. For example, the maximum affordable home price for a onebedroom condominium is calculated as the average of the maximum affordable home price for one- and twoperson households.

[^8]: ${ }^{10}$ The calculation of homeowner affordability is conservative in that the model accounts for additional costs for buyers (such as utility costs) that might not be considered by all lenders.
 ${ }^{11}$ The assumption that homebuyers spend 35 percent of gross household income on housing results in a lower affordability gap than if 30 percent of gross household income were used instead.
 ${ }^{12}$ U.S. Department of Housing and Urban Development, "Allowances for Tenant-Furnished Utilities and Other Services: Housing Authority of San Mateo County," November 2013.
 ${ }^{13}$ Units are assumed to have natural gas heating, cooking, and water heating systems, as natural gas is the most common fuel for units located in San Mateo County. Sources: U.S. Census Bureau, 2012 American Community Survey, "Table B25117: Tenure by House Heating Fuel," San Mateo County; U.S. Census Bureau, 2011 American Housing Survey, "Table C-03-AH-M, San Francisco-San Mateo-Redwood City: Heating, Air Conditioning, and Appliances - All Housing Units."
 ${ }^{14}$ Sources: CalHFA Mortgage Calculator, accessed March 2014; Zillow.com, "Current Mortgage Rates and Home Loans," accessed March 2014; interviews with California Housing Finance Agency (CalHFA) Preferred Loan Officers, March 2014.

[^9]: ${ }^{15}$ HOA fees are estimated at $\$ 300$ per unit per month, based on common HOA fees in San Mateo County as reported in: Polaris Pacific, "Silicon Valley Condominium Market," February 2014.
 ${ }^{16}$ The annual property tax rate is estimated at 1.18 percent of the sales price, based on the average total tax rate for San Mateo County (calculated from County of San Mateo, 2008-09 Property Tax Highlights http://www.co.sanmateo.ca.us/Attachments/controller/Files/PTH/PTH_2009.pdf) and discussions with Preferred Loan Officers.
 ${ }^{17}$ The annual private mortgage insurance premium rate is estimated at 0.89 percent of the total mortgage amount, consistent with standard requirements for conventional loans with a five percent down payment. Sources: Genworth, February 2014; MGIC, December 2013; Radian, April 2014.
 ${ }^{18}$ The annual hazard and casualty insurance rate is assumed to be 0.35 percent of the sales price, consistent with standard industry practice.

[^10]: ${ }^{19}$ These prevailing wage requirements refer only to labor cost requirements on construction projects that receive funding from the state or federal government. These are not the same as minimum wage requirements that individual cities may adopt.

[^11]: ${ }^{20}$ Ideally, cost estimates would be based only on projects built in the last year or two. However, the decline in new construction after 2007 necessitated that the analysis use several years' worth of data in order to estimate for-sale housing costs. Since costs are not adjusted for inflation, they may be slightly lower than actual costs required for a new project to be built in 2014 or 2015. This approach is more conservative - and likely more accurate - than applying across-the-board inflation factors to historic costs. Furthermore, the increasing cost of residentially zoned, high density parcels is the main source of development cost increase. Adjusting land costs for inflation is not easily done.
 ${ }^{21}$ The hypothetical condominium building type is a Type V building with underground parking and floor-area ratio of 1.7. The building characteristics are described in Figure IV-8.

[^12]: ${ }^{22}$ The fee estimates presented above represent the best approximations available from the City of Belmont.

[^13]: ${ }^{23}$ Mortgage terms for first-time homebuyers typically allow down payment of five percent; these terms require private mortgage insurance.

